Recent News

A team led by UMass chemist Dhandapani Venkataraman, “DV,” and electrical engineer Zlatan Aksamija, reported in Nature Communications on an advance they outline toward more efficient, cheaper, polymer-based harvest of heat energy. “It will be a surprise to the field,” DV predicts, “it gives us another key variable we can alter to improve the thermo-electric efficiency of polymers. This should make us, and others, look at polymer thermo-electrics in a new light.” Aksamija explains, “Using polymers to convert thermal energy to electricity by harvesting waste heat has seen an uptick in interest in recent years. Waste heat represents both a problem but also a resource; the more heat your process wastes, the less efficient it is.”

DV and his chemistry PhD student Connor Boyle, with Aksamija and his electrical engineering Ph.D. student Meenakshi Upadhyaya worked in what DV calls “a true collaboration,” where each insight from numerical simulations informed the next series of experiments, and vice versa. The team turned to chemist Michael Barnes, a co-author on their recent paper, who used Kelvin Probe Force Microscopy to probe the dopants at the nano level and show that clustering is indeed present in polymers doped at room temperature, but not at higher temperatures.

The findings should provide a new path for designing more efficient polymers for thermo-electric devices. DV notes that until now, chemists and materials scientists have been trying to organize polymers to be more like the inorganics, “nicely aligned and very regular, which is difficult to do,” he adds. “It turns out that this may not be the way to go; you can take another road or another approach. We hope this paper provides a basis to move polymer-based thermo-electrics forward.”

The American Chemical Society showcased the ‘Phyjama’ developed by Trisha L. Andrew, chemistry, and presented at the ACS Spring 2019 National Meeting & Exposition. The ‘smart’ pajamas include monitors to help track sleep patterns, and could be available to consumers within a few years.

"Our smart pajamas overcame numerous technical challenges," says Trisha L. Andrew, Ph.D., who led the team. "We had to inconspicuously integrate sensing elements and portable power sources into everyday garments, while maintaining the weight, feel, comfort, function and ruggedness of familiar clothes and fabrics. We also worked with computer scientists and electrical engineers to process the myriad signals coming from the sensors so that we had clear and easy-to-understand information." 

Getting enough quality sleep can help protect people against stress, infections and multiple diseases, such as heart and kidney disease, high blood pressure and diabetes, according to the National Institutes of Health. Studies have found that quality sleep also increases mental acuity and sharpens decision-making skills. Yet most people do not get enough sleep — or the right kind. 

"Vicki’s performance has been outstanding by any measure. She is considered the go-to person for many issues, including financial, compliance, and more. She is intelligent, efficient, always cheerful, and can be relied upon to solve any problem. She is indispensable and irreplaceable in that she almost single-handedly oversees all financial operations of our department, and is, in fact, the only person who fully understands them. "   Serio emphasized her gratitude to the award winners for their extraordinary work, presenting them as leaders for the college. “Their tremendous work continues to foster student achievement, demonstrate excellence, and build a more inclusive environment,” she said. “They are wonderful role models for us all.”  Friends, family, and colleagues gathered at a reception and awards ceremony May 14 for this year’s recipients of the CNS Outstanding Achievement Awards. The awards recognize faculty, staff and students who have made important contributions to their discipline, department, college and university.

"Vachet’s interdisciplinary research program is at the interfaces of analytical, biological, and materials chemistry. He and his research group develop and apply new methods based on mass spectrometry to tackle biomedically important problems that are difficult to address with existing tools. His work has elucidated the molecular details associated with protein amyloid fibril formation, which is a special type of protein aggregation that occurs in numerous human diseases. His research has also led to the development of sensitive new methods to track nanomaterial drug delivery vehicles in biological systems, facilitating the creation of better therapeutics with fewer side effects." 

Award recipients are chosen by committees chaired by designees appointed by  Dean Tricia Serio, including past recipients. Dean Serio,  associate dean for research and innovation Mark Tuominen, and department representatives congratulated the winners, each speaking briefly about their experiences. 

Upcoming Events

Sarah R. Marques
Dissertation Defense
Friday, July 26, 2019

"Fluorescence Spectroscopy and Microscopy Studies of Chromophore Coupling in Isolated Small Molecule Nanostructures"

11:00 am
PSB 283
Research Adviser:
Michael D. Barnes
Akash Gupta
Dissertation Defense
Wednesday, August 7, 2019

“Engineering Nanomaterials for Imaging and Therapy of Bacteria and Biofilm-Associated Infections”

1:00 pm
ISB 329
Research Adviser:
Vincent M. Rotello
Jingjing Gao
Dissertation Defense
Thursday, August 8, 2019

“Modulating Nanoparticle-Protein Interactions Through Covalent or Noncovalent Approach for Biomedical Applications”

1:30 pm
GSMN 153
Research Adviser:
S. Thayumanavan
Yasaman Gholamalipour
Dissertation Defense
Friday, August 16, 2019

“RNA-Seq and Mechanistic Enzymology Confirm RNA Self-Templated Extension by T7 RNA Polymerase and Suggest Novel Approaches Towards Improved in vitro RNA Synthesis”

10:00 am
LSL N410
Research Adviser:
Craig T. Martin
Tianying Liu
Dissertation Defense
Thursday, August 29, 2019

"Covalent Labeling-Mass Spectrometry for Characterizing Protein-Ligand Complexes"

2:00 pm
LSL N410
Research Adviser:
Richard Vachet