

A National Center for Innovative Small Drinking Water Systems

Sub-Project A2: Simultaneous Removal of Inorganic Contaminants, DBP Precursors, and Particles in Alum and Ferric Coagulation

The University of Texas at Austin Desmond Lawler, Lynn Katz Isabella Gee, Seulki Yeo and Jon Herrboldt March 21, 2016

Introduction

- Brief Description: Use enhanced alum or ferric coagulation for simultaneous inorganic and natural organic matter removal, and develop a mechanistic understanding of the interrelationships between NOM, inorganic contaminants, and metal precipitation. Inorganic contaminants of interest include:
 - Fluoride
 - Arsenic
 - Chromium
 - Manganese
- Anticipated target utility characteristics:

- Small water systems using surface waters with elevated inorganic contaminant concentrations that may already be applying alum or ferric coagulation as part of their treatment process

• Continuum of technology development:

Outputs and Outreach

Completed:

- "Mechanisms of fluoride removal: adsorption and co-precipitation with aluminum hydroxide in the presence and absence of NOM" ACS National Meeting, Denver, March 2015
- "Impact of ligands on co-precipitation and adsorption with aluminum" ACS National Meeting, Boston, March 2016

Scheduled:

none

<u>Anticipated:</u> White paper for WINSSS website, late Spring 2016. Manuscript for submission to a technical Journal, Fall 2016. WINSSS or US EPA Small Systems Webinar – late 2016 or 2017

Outline

- Alum Coagulation for Fluoride Removal (Isabella Gee)
 - Bench- Scale Testing
 - Synthetic Water
 - Natural Water
 - Pilot Study Testing
 - MacKenzie Lake, TX
 - Manitou Springs, CO
- Fe Coagulation for Fluoride Removal (Ki Yeo)
 - Bench- Scale Testing
 - Synthetic Water
- Al and Fe Coagulation for Trace Metal Removal (Lynn Katz)

Synthetic Water Tests

Synthetic Water Test Conditions

Reagent	Quantity	Unit	Purpose
CaCl ₂	336	mg	Hardness
NaHCO ₃	504	mg	Alkalinity
NaCl	Variable	mg	Ionic Strength
HCI (1N)	6	mL	Acidification
H ₂ O	1.994	L	Background

- Three NOM surrogates
 - Pthallic Acid
 - Pyromellitic Acid
 - Salycylic Acid
- pH varied
 - Between 4 and 9
- Coagulant dose varied
 - Between 20 500mg/L

Removal of Fluoride & Organic Acids

Aluminum Residuals

Natural Water Tests

Natural Water Tests

- Two Waters
 - MacKenzie Lake, TX
 - Manitou Springs, CO
- pH controlled
 - pH 6.5
 - Using Na₂CO₃, NaOH, and HCI
- Alum dose varied between each jar
 - Between 20 500mg/L

Natural Water Characteristics

	Natural Waters			
Parameter	TX Water	CO Water		
	Site	Site		
Water Source	SW	SW		
рН	8.60	7.58		
[F] (mg/L)	3.04	3.15		
DOC (mg/L Carbon)	9.20	1.18		
SUVA (L/mg-m)	0.87	1.76		
Alkalinity (mg/L CaCO ₃)	294.6	16.8		

Natural Waters from TX and CO - Fluoride and Organic Removal

Aluminum Residuals

Pilot Studies

Pilot Studies

MacKenzie Lake, TX

- pH varied with alum dose (High Alk water)
- Alum dose varied between 100—300 mg/L

Manitou Springs, CO

- pH control required for low Alk water (6.5,7.5)
- Alum dose varied between 20 300 mg/L

MacKenzie Lake, TX

TX Pilot Studies: Approach to Steady State

TX – Fluoride Removal

MMWA, TX Steady State Values in Flocculation Effluent

Alum Dose	nЦ	F	%	DOC	%
(mg/L)	рп	(mg/L)	Removal	(mg/L)	Removal
20	8.32	3.24	6	8.9	1
50	7.98	3.14	10	8.9	1
100	7.72	2.88	21	8.4	7
150	7.35	2.42	30	8.0	11
200	7.20	1.98	43	7.4	18
300	6.89	1.57	56	6.8	24

Manitou Springs, CO

Colorado Pilot Results

Alum Dose (mg/L)	F Removal (%)	Si Removal (%)	Al Residual (mg/L)	UV-254 Removal (%)
20	14.3	4.8	0.475	53
50	33.9	11.5	0.229	62
100	52.8	16.7	0.074	65
150	63.6	21.2	0.056	64
200	71.2	27.4	0.038	65
300	79.8	34.0	0.031	66

Effect of pH on Removals

	F	UV-254
рН	Removal	Removal
	(%)	(%)
6.5	71	65
7.5	51	54

Fluoride Removals

Alum Dose (mg/L)	Synthetic Water	CO Jar Test	CO Pilot	TX Jar Test	TX Pilot
20	17	12	14	6	6
50	30	34	34	18	10
100	46	48	53	35	21
150	71	74	64	56	30
200	80	81	71	70	43
300	86	87	80	83	56

Conclusions for Al Coagulation

- Alum coagulation can be an effective treatment process for lowering fluoride concentrations to acceptable levels. The optimum pH is 6.5.
- The impact of NOM on F removal is minimal.
- Pilot tests of the Colorado Water were consistent with Jar Tests and Synthetic water tests
- Pilot tests for the TX water showed lower removals of F than Jar tests due to differences in pH
- F removal in jar tests with TX water were also lower than the synthetic water tests due to differences in background water chemistry (e.g. low SUVA, high TOC, high alkalinity)

FeCl₃ Coagulation

Objectives

- Quantify Fluoride Removal in iron coagulation systems
- Determine the effect of NOM surrogates on fluoride removal
- Determine the effect of NOM on fluoride removal
- Determine the effect of fluoride on removal of NOM

Bench-Scale Testing

- Synthetic Water
- pH varied
 - pH 4.0 6.5 (ΔpH=0.5)
 - Using NaOH, and HCl
- FeCl₃ dose controlled
 = 100mg/L and 200mg/L
- Organic acids
 - Pyromellitic acid
 - Phthalic acid
 - NOM

Comparison of Co-precipitation vs Pre-formed Fe(OH)_{3(s)}

FeF_x Complexation

FeF₂⁺ is a Key Player of Fe Coagulation

Fluoride Removal

Fluoride Removal at pH 4.0

Pyromellitic+Fluoride

Organic Removal – Phthalic acid

Organic Removal – Pyromellitic acid

UV-Vis

TOC

Removal of NOM in Fe Coagulation

TOC

Conclusions

• Fe coagulation

- Fluoride removals up to about 30% were observed.
 - Max removal at pH 4.5
 - No reduction in removal in the presence of organic acids
- Effect of fluoride on organic acid removal is dependent on the organic acid and the pH/
- Compared to Alum coagulation
 - More organic removal over the pH range
 - Max. fluoride removal at lower pH
 FeCl₃=pH 4.5 , Alum=pH 6.5

Removal of Trace Metals in Enhanced Coagulation

- Recent report found elevated levels of arsenic throughout Texas drinking water systems
- Chromium-6 Found in Tap Water of 31 U.S. Cities (Dec. 2010)
- Enhanced Coagulation could be applied for Arsenic and Chromium removal

Texas Statesman: Arsenic persists in some Texas water supplies

Methodology

- Evaluate Removals in Freshly Precipitated and Pre-precipitated Systems in Increasingly Complex Systems
 - Single-Solute
 - Bi-Solute
 - Tri-Solute
 - Natural Systems
- Assess the Potential of DLM Surface Complexation Model for Predicting Removal

Predictions of Adsorption onto Hydrous Ferric Oxide AsT = 3.3e-6M, CrT = 2e-6M, CO3T = 0.01M

Adsorption Experiments on GFH

Single Solute arsenate pH sorption edge surface coverages (µmol/g) corresponding to 100 percent removal from solution

Solid	(g/L)	I.S. (M)	Sorbate	Max. Г (µmol/g)	Buffer	(M)
GFH	0.01	0.01	As SiO ₂ Ca ²⁺	133 111 2495	NaHCO ₃	0.01
GFH	0.01	0.01	As SiO2 Ca2+	133 1113 2495	NaHCO3	0.01
E33	0.01	0.01	As SiO ₂ Ca ²⁺	133 111 2495	NaHCO ₃	0.01
E33	0.01	0.01	As SiO ₂ Ca ²⁺	133 1113 2495	NaHCO ₃	0.01

Estimation of Site Density

	E33*	GFH*
Surface area from surface charge density comparisons (m ² /g)	350	600
SSD, tritium exchange (sites/nm ²)	2.51	1.43
SSD, anion maximum sorption (sites/nm ²)	0.55	1.18
SSD, cation maximum sorption (sites/nm ²)	1.90	1.70

Surface protolysis: DLM Fits to Titration Data

As(V) GFH

Si

Ca

E<u>33</u>

10 - 0.00M

Bisolute Predictions on E33 As/Si As/Ca

- Single Solute Model
- AsT=102 ppb As; SIO₂,T=696 ppb
- AsT=106 ppb As; SIO₂,T=6.29 ppm
- Bisolute Model
- Bisolute Model

Tri-Solute Predictions on E33

Summary

- Precipitation, complexation and adsorption in alum coagulation are intricately linked
- Most adsorption models examine aged precipitates
- Most precipitation models do not evaluate short term effects of adsorption
- Understanding the mechanisms of these precipitation and adsorption processes will allow better estimation of removals of contaminants in coagulation systems

Extra Slides

Effect of pH on Al Residuals

Fluoride Removal

Organic Removal

Fluoride Removal

Organic Removal

Alum Dose (mg/L)	Removal (%)
20	33
50	40
100	47
150	50
200	51
300	55