

Innovations in the On-site Manufacturing of Tall Wind Turbine Towers

Andrew T. Myers, PhD, PE
Assistant Professor of Civil Engineering
Northeastern University
atm@neu.edu
Mass Wind Working Group Meeting
September 30, 2015

Outline

- Background
- Research Needs and Project Goals
- Large-scale Experiments
 - Imperfections
 - Strength
 - Buckling characteristics
 - Complementary GMNIA analyses
- Future Work

Background

- Wind generated-energy in the Great Plains among the cheapest energy sources in the country.
- Elsewhere, harvesting wind energy becomes economical only at higher elevations.

- Predominant wind tower design is a slender steel monopole with diameter-to-thickness (D/t) ratios, ~100-300.
- Utility-scale towers are tapered.
- Manufactured by "can-welding."

Great! Let's make taller towers!

 One innovative solution, patented by Keystone Tower Systems, is to make tapered tubes with automated spiral welding.

Research Needs and Project Goals

Base cross-section designed to EN 1993-1-6 for typical base loads of 140m, 3MW tower:

Ultimate Moment = 160 MN-m Damage Equiv. Moment = 40 MN-m (at 1e7 cycles; m = 4)

Need to understand buckling for flexure and high D/t

Buckling of a wind tower

Current State of Affairs

- As steel tubular towers become taller with larger base diameters, the buckling limit state becomes more important and tower sections become more slender.
- No AISC design equation for moment strength of very slender circular hollow sections ($\lambda > 0.45$).
- Eurocode provides equation, but, at high slenderness, it is based on compression tests not bending.
- Insufficient test data to justify bending design equation.
- Buckling of circular hollow sections is highly imperfection sensitive.
- Eurocode's GMNIA method is promising, but challenging.
- Need for large-scale tests, imperfection measurements and complementary GMNIA simulations.

Project Goals

- Validate Eurocode buckling for:
 - High D/t
 - Flexure
 - Imperfection field from new manufacturing process
- Develop GMNIA protocols to enable greater optimization.
- Establish basis for design in the U.S.

Large-scale Experiments

Test Matrix

Spec. #	Min D/t [-]	Max D/t [-]	D _{min} [mm]	D _{max} [mm]	Gauge	t [mm]	L [m]	α [-]
1	195	224	663	762	10	3.40	3.43	0.83°
2	127	139	815	892		6.43	3.37	0.65°
3	235	260	812	897	10	3.45	3.38	0.76°
4	283	308	864	940	11	3.05	3.40	0.82°
5	283	308	864	940	11	3.05	3.38	0.82°
6	283	308	864	940	11	3.05	3.40	0.82°
7	316	350	965	1067	11	3.05	3.40	0.86°
8	316	350	965	1067	11	3.05	3.40	0.86°
9	316	350	965	1067	11	3.05	3.40	0.86°
10*	68	154	800	975		6.35	3.40	0.90°

Overview

- Specimens #1-4 and #6-7 finished
- Specimens #5, #8-10 will be tested this fall

Test Matrix

Spec. #	Min D/t [-]	Max D/t [-]	D _{min} [mm]	D _{max} [mm]	Gauge	t [mm]	L [m]	α [-]
1	195	224	663	762	10	3.40	3.43	0.83°
2	127	139	815	892		6.43	3.37	0.65°
3	235	260	812	897	10	3.45	3.38	0.76°
4	283	308	864	940	11	3.05	3.40	0.82°
5	283	308	864	940	11	3.05	3.38	0.82°
6	283	308	864	940	11	3.05	3.40	0.82°
7	316	350	965	1067	11	3.05	3.40	0.86°
8	316	350	965	1067	11	3.05	3.40	0.86°
9	316	350	965	1067	11	3.05	3.40	0.86°
10 *	68	154	800	975		6.35	3.40	0.90°

Test Matrix

Spec. #	Min D/t [-]	Max D/t [-]	D _{min} [mm]	D _{max} [mm]	Gauge	t [mm]	L [m]	α [-]
1	195	224	663	762	10	3.40	3.43	0.83°
2	127	139	815	892		6.43	3.37	0.65°
3	235	260	812	897	10	3.45	3.38	0.76°
4	283	308	864	940	11	3.05	3.40	0.82°
5	283	308	864	940	11	3.05	3.38	0.82°
6	283	308	864	940	11	3.05	3.40	0.82°
7	316	350	965	1067	11	3.05	3.40	0.86°
8	316	350	965	1067	11	3.05	3.40	0.86°
9	316	350	965	1067	11	3.05	3.40	0.86°
10 *	68	154	800	975		6.35	3.40	0.90°

- Pure bending, pure compression and bending-compression
- 3300 kN-m max moment
- 10° max end rotation
- 3000 kN max tension, 2000 kN max compression
- Specimen welded to 100 mm thick end plates

Initial Imperfection Scans

Tapered spiral welded (Specimen #4)

Can welded (Specimen #10)

29

Specimen 4 Results

Spec. #	Min D/t [-]	Max D/t [-]	D _{min} [mm]	D _{max} [mm]	Gauge	t [mm]	L [m]	α [-]
4	283	308	864	940	11	3.05	3.40	0.82°

Eurocode QC strengths calculated for "equivalent" diameter

Specimen 4 Results – Load Drop I

First test to buckle simultaneously at three different cross-sections.
 Buckling initiated near the end with minimum diameter.

Specimen 4 Results

Specimen 4 Results – Load Drop II

Additional buckling waves on bottom of the second and third sheets

Specimen 4 Results

Specimen 4 Results – Load Drop III

Additional buckling waves on top of the fifth sheet

37

Specimen 4 Results

Specimen 4 Results – End

Buckling pattern somewhat helical in reverse direction as weld

GMNIA Analyses – Convergence Study

- S4R elements in ABAQUS.
- Nonlinear collapse analysis with Rik's Solver.
- Convergence study on shell element type, aspect ratio, size, orientation (aligned with helix vs normal) and loading (pure compression vs bending).

• Results showed convergence for S4R elements, 1:1 aspect ratio, element size = $\sim 0.5 \sqrt{Rt}$, elements oriented normally and bending.

GMNIA Results – Specimen 4

- GMNIA results shown for S4R elements, 1:1 aspect ratio, element size = $\sim 0.5\sqrt{Rt}$, elements oriented normally, bending
- Measured imperfections
- Idealized boundary conditions
- Measured material properties (idealized as bilinear with yield plateau)
- Contours of Von Mises stress

GMNIA Results – Specimen 4

42

Future Work

- More large-scale tests.
- Probabilistic assessment of initial imperfections.
- FEA sensitivity study of imperfections.
- Combining tests and FEA to develop design equations and FEA protocols for high slenderness steel tubes subject to flexure.

Collaborators

- Eric Smith, Keystone Tower Systems
- Ben Schafer, JHU
- Angelina Jay, NEU
- Robert Rosa, NEU
- Shahab Torabian, JHU
- Abdullah Mahmoud, JHU

Acknowledgements

NEU STReSS Lab

- Funding by:
 - NSF grant CMMI-1334122
 - NSF SBIR and DOE SBIR
 - Mass Clean Energy Center

THANK YOU.

Prof. Andrew Myers, PE, PhD Northeastern University atm@neu.edu