
Innovations in the On-site 
Manufacturing of Tall Wind Turbine 
Towers 

Andrew T. Myers, PhD, PE 

Assistant Professor of Civil Engineering 

Northeastern University 

atm@neu.edu 

Mass Wind Working Group Meeting 

September 30, 2015 

 

 

1 



2 

Outline 

• Background  

 

• Research Needs and Project Goals 

 

• Large-scale Experiments 

• Imperfections 

• Strength 

• Buckling characteristics 

• Complementary GMNIA analyses 

 

• Future Work 



3 

Background 
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• Wind generated-energy in the Great Plains among 
the cheapest energy sources in the country. 

• Elsewhere, harvesting wind energy becomes 
economical only at higher elevations. 
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Can 

• Predominant wind tower design is a slender steel monopole 
with diameter-to-thickness (D/t) ratios, ~100-300. 

• Utility-scale towers are tapered.  

• Manufactured by “can-welding.” 

Bolted 

Flange 
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Optimal Tower 
Base Diameter

Transportable Tower 
Base Diameter

• Great! Let’s make taller towers! 
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Patent:US8720153… 

• One innovative solution, patented by Keystone Tower 
Systems, is to make tapered tubes with automated 
spiral welding. 
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Research Needs and Project 
Goals 
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QC C 

QC B 

QC A 

DC 71 

80 

90 

112 

Ultimate Moment     = 160 MN-m 
Damage Equiv. Moment   = 40 MN-m (at 1e7 cycles; m = 4) 

Base cross-section designed to EN 1993-1-6 for 
typical base loads of 140m, 3MW tower: 
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Today, fatigue controlled 

If free of constraints, 
shift to buckling 
controlled 

QC C 

QC B 

QC A 

DC 71 

80 

90 
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Optimal Tower 
Base Diameter

Transportable Tower 
Base Diameter
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Need to understand buckling for flexure and high D/t 

D/t = 397 

D/t = 302 

D/t = 222 

QC C 

QC B 

QC A 

DC 71 

80 

90 

112 
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Buckling of a wind tower 
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Current State of Affairs 
• As steel tubular towers become taller with larger base 

diameters, the buckling limit state becomes more important 
and tower sections become more slender. 

• No AISC design equation for moment strength of very 
slender circular hollow sections (l > 0.45). 

• Eurocode provides equation, but, at high slenderness, it is 
based on compression tests not bending.  

• Insufficient test data to justify bending design equation. 

• Buckling of circular hollow sections is highly imperfection 
sensitive. 

• Eurocode’s GMNIA method is promising, but challenging. 

• Need for large-scale tests, imperfection measurements and 
complementary GMNIA simulations. 
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• Validate Eurocode buckling for: 

• High D/t 

• Flexure 

• Imperfection field from new manufacturing process 

• Develop GMNIA protocols to enable greater optimization. 

• Establish basis for design in the U.S.  

 

Project Goals 
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Initial 
imperfection scan 

 
(laser, full 3d) 

Ultimate load testing 
in flexure 

Load curve 
(moment v. rotation) 

GMNIA 
FEA 

Project Goals 

Simultaneous surface 
scan 

(laser, compression face) 
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Large-scale Experiments 



Spec.  
# 

Min 
D/t 
[-] 

Max 
D/t 
[-] 

Dmin  
[mm] 

Dmax 

[mm] 
Gauge 

t 
[mm] 

L 
[m] 

α 
[-] 

1 195 224 663 762 10 3.40 3.43 0.83° 

2 127 139 815 892 -- 6.43 3.37 0.65° 

3 235 260 812 897 10 3.45 3.38 0.76° 

4 283 308 864 940 11 3.05 3.40 0.82° 

5 283 308 864 940 11 3.05 3.38 0.82° 

6 283 308 864 940 11 3.05 3.40 0.82° 

7 316 350 965 1067 11 3.05 3.40 0.86° 

8 316 350 965 1067 11 3.05 3.40 0.86° 

9 316 350 965 1067 11 3.05 3.40 0.86° 

10* 68 154 800 975 -- 6.35 3.40 0.90° 

Test Matrix 
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Overview 
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• Specimens #1-4 and #6-7 finished 

• Specimens #5, #8-10 will be tested this fall 
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Spec.  
# 

Min 
D/t 
[-] 

Max 
D/t 
[-] 

Dmin  
[mm] 

Dmax 

[mm] 
Gauge 

t 
[mm] 

L 
[m] 

α 
[-] 

1 195 224 663 762 10 3.40 3.43 0.83° 

2 127 139 815 892 -- 6.43 3.37 0.65° 

3 235 260 812 897 10 3.45 3.38 0.76° 

4 283 308 864 940 11 3.05 3.40 0.82° 

5 283 308 864 940 11 3.05 3.38 0.82° 

6 283 308 864 940 11 3.05 3.40 0.82° 

7 316 350 965 1067 11 3.05 3.40 0.86° 

8 316 350 965 1067 11 3.05 3.40 0.86° 

9 316 350 965 1067 11 3.05 3.40 0.86° 

10* 68 154 800 975 -- 6.35 3.40 0.90° 

Test Matrix 
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Spec 
2 



Spec.  
# 

Min 
D/t 
[-] 

Max 
D/t 
[-] 

Dmin  
[mm] 

Dmax 

[mm] 
Gauge 

t 
[mm] 

L 
[m] 

α 
[-] 

1 195 224 663 762 10 3.40 3.43 0.83° 

2 127 139 815 892 -- 6.43 3.37 0.65° 

3 235 260 812 897 10 3.45 3.38 0.76° 

4 283 308 864 940 11 3.05 3.40 0.82° 

5 283 308 864 940 11 3.05 3.38 0.82° 

6 283 308 864 940 11 3.05 3.40 0.82° 

7 316 350 965 1067 11 3.05 3.40 0.86° 

8 316 350 965 1067 11 3.05 3.40 0.86° 

9 316 350 965 1067 11 3.05 3.40 0.86° 

10* 68 154 800 975 -- 6.35 3.40 0.90° 
24 

Test Matrix 
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Spec 
10 
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• Pure bending, pure compression and bending-compression 

• 3300 kN-m max moment 

• 10° max end rotation 

• 3000 kN max tension, 2000 kN max compression 

• Specimen welded to 100 mm thick end plates 

 

Actuator

Actuator

Specimen

Pin

Slotted 
Pin

Baseplate

Baseplate

Crossbeam

Crossbeam

Dmin

Dmax

Cross weld 
Orientation
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Imperfections amplified 20x; Both specimens ~1m in diameter, ~3m long 

Tapered spiral welded  
(Specimen #4) 

Initial Imperfection Scans 

Can welded  
(Specimen #10) 
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Simultaneous Surface 
Scan 
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Specimen 4 Results 

I 

II 

III 

End 

Spec.  
# 

Min 
D/t 
[-] 

Max 
D/t 
[-] 

Dmin  
[mm] 

Dmax 

[mm] 
Gauge 

t 
[mm] 

L 
[m] 

α 
[-] 

4 283 308 864 940 11 3.05 3.40 0.82° 

• Eurocode QC strengths calculated for “equivalent” diameter 
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Specimen 4 Results – Load Drop I 
• First test to buckle simultaneously at three different cross-sections. 

Buckling initiated near the end with minimum diameter. 
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Pre-buckling 

Pre-test 

Load drop I 

Specimen 4 Results 
– Load Drop I 

Dmax  

Dmin  
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I 

II 

III 

Specimen 4 Results 

End 
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Specimen 4 Results – Load Drop II 

• Additional buckling waves on bottom of the second and third sheets 
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I 

II 

III 

Specimen 4 Results 

End 
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Specimen 4 Results – Load Drop III 

• Additional buckling waves on top of the fifth sheet 
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I 

II 

III 

Specimen 4 Results 

End 



39 

Specimen 4 Results – End 

• Buckling pattern somewhat helical in reverse direction as weld 
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GMNIA Analyses – Convergence Study 
• S4R elements in ABAQUS. 

• Nonlinear collapse analysis with Rik’s Solver. 

• Convergence study on shell element type, aspect ratio, size, 
orientation (aligned with helix vs normal) and loading (pure 
compression vs bending). 

 

 

 

• Results showed convergence for S4R elements, 1:1 aspect 
ratio, element size = ~0.5 𝑅𝑡, elements oriented normally 
and bending. 
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GMNIA Results – Specimen 4 
 

 

 

• GMNIA results shown for S4R elements, 1:1 aspect ratio, element 

size = ~0.5 𝑅𝑡, elements oriented normally, bending 

• Measured imperfections 

• Idealized boundary conditions 

• Measured material properties (idealized as bilinear with  

   yield plateau) 

• Contours of Von Mises stress 
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GMNIA Results – Specimen 4 
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Future Work 

• More large-scale tests. 

 

• Probabilistic assessment of initial imperfections. 

 

• FEA sensitivity study of imperfections. 

 

• Combining tests and FEA to develop design 
equations and FEA protocols for high slenderness 
steel tubes subject to flexure. 
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