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This research develops superior approaches to the traditional site assessment process, 

as well as novel strategies that offer a distinct advantage over the traditional process.  

Two major contributions are presented: new analysis approaches for site assessment, and 

new technical approaches to wind resource monitoring. 

Two new analysis approaches for wind energy site assessment are developed.  The 

first is a method for site assessment uncertainty analysis.  Analytical expressions for the 

sensitivity factors of the Weibull parameters are developed, which yield exact values for 

any combination of wind resource, power curve, and energy losses.  This enables better 

determination of the uncertainty in the annual energy production estimate.  The second 

approach is a decision making strategy to determine whether or not to stop measuring the 

wind resource at any point in the process.  In contrast, in the standard approach, the wind 

resource is almost always measured for a full year, which can be inefficient in many 
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cases.  The results show that this approach is just as accurate as measuring for a year, but 

saves significant time and money. 

Two new technical approaches for measuring the wind resource are developed.  The 

first measures multiple sites in a year using one ground-based device, which is brought 

back and forth between sites, resulting in two discontinuous measured data sets, each 

distributed over the year.  The accuracy and uncertainty of the predictions of the wind 

resource are equivalent to those using a full year of measured data.  The second new 

technical approach can improve shear extrapolation.  It relies on short-term data from a 

ground-based device at a site where a met tower is installed for a year.  The short-term 

data are used to correct the year-long shear parameter.  The results show substantial 

improvements in the accuracy and uncertainty of shear predictions. 

These new analysis approaches and technical monitoring strategies are unified into a 

comprehensive “Streamlined Site Assessment Methodology.”  It provides a flexible, 

unified approach for executing the site assessment process in which the specific priorities 

and constraints of the project dictate the resulting approach.  This methodology can 

drastically alter and improve site assessment. 
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CHAPTER I  

INTRODUCTION 

Wind energy site assessment evaluates the potential for a given site to produce energy 

from wind turbines.  When wind energy development is under consideration, a site 

assessment is usually undertaken.  Specifically, wind energy site assessment is the 

process of evaluating the wind resource at a potential wind turbine or wind farm location, 

estimating the energy production from a wind turbine or turbines, and then determining 

the economic viability of the project.  The wind resource at a site directly affects the 

amount of energy that a wind turbine can extract, and therefore the success of the 

venture.  The wind resource is primarily quantified by the mean wind speed at the site, 

although the turbulence intensity, the probability distribution of the wind speed, and the 

prevailing wind direction are also important factors.  Once the wind resource is 

determined at a site, the expected annual energy production (AEP) of a selected wind 

turbine or turbines is calculated.  This calculation combines the expected wind resource 

with the power curve of the wind turbine(s) and the expected energy losses in order to 

estimate how much energy the wind turbine(s) will actually produce at the site.  Finally, 

the estimate of the energy production and the relevant economic parameters of the project 

are combined to determine the potential profitability or economic success of a wind 

energy development at the site.   

This research presents an improved, innovative, and comprehensive approach to wind 

energy site assessment, dubbed the “Streamlined Site Assessment Methodology” 

(SSAM).  SSAM encompasses both superior approaches to the traditional site assessment 

process, as well as novel site assessment strategies that offer a distinct advantage over the 
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traditional process.  The results of this research can lead to a drastically different and 

improved approach to wind energy site assessment. 

1.0 Traditional Wind Energy Site Assessment 

Wind energy development is typically initiated by a private company, government 

body, or utility that is interested in producing wind energy in a particular region.  The 

process generally begins with a “preliminary area identification,” which entails 

identifying a relatively large area where wind energy development is viable [1].  A wind 

atlas, such as the “Wind Energy Resource Atlas of the United States” [2], or wind maps 

can be used for this purpose.   

Next, a specific site or sites within the preliminary area is selected for consideration 

for wind energy development.  Ideally, these sites are selected based on topography and 

other factors that would suggest a successful project, although often zoning and 

community support dictate the actual locations.  Regardless, these sites are then evaluated 

for their potential to produce wind energy by measuring the wind resource.  The process 

of assessing the potential for a specific site to produce energy from wind turbines is the 

site assessment process.  The “Wind Resource Assessment Handbook” [1] provides a 

detailed description of many aspects of the site assessment process, especially a method 

of evaluating the wind resource at a site.     

The assessment of a specific site for wind energy development is the focus of this 

research.  The larger strategic questions of regional development are not considered here.  

Rather, this research focuses on the process that follows the selection of a site.   
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1.1 The Traditional Wind Energy Site Assessment Process 

Traditional wind energy site assessment is a well defined, established process 

whereby the wind resource at a site is evaluated, and the energy production and economic 

success of a wind energy development at the site are estimated.  There is a general 

consensus as to how this process is performed.  The Wind Resource Assessment 

Handbook, Wind Energy – The Facts (Volume 1, Chapter 2) [3], consulting firms [4], 

and state guidebooks on site assessment [5], all endorse a similar site assessment 

methodology.  The steps that make up the site assessment process are: 

1. Wind Resource Evaluation 

a. Measurement of the Wind Resource 

b. Estimation of the Long-Term Wind Resource 

c. Extrapolation of the Wind Resource to the Turbine Hub Height and 

Location 

2. Wind Turbine Selection and Power Curve Adjustment 

3. Energy Loss Estimation 

4. Energy Production and Uncertainty Estimation 

5. Economic Evaluation 

 

The steps are now described in detail. 

1. Wind Resource Evaluation – Wind resource evaluation is the first major step in 

the wind energy site assessment process.  It consists of using measured wind 

speed data to estimate the long-term hub height wind resource at the location of 

each turbine in the wind farm.  The wind resource is usually characterized by the 
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mean wind speed and the Weibull parameters.  Because the wind resource varies 

from year to year, an estimate of the long-term characteristics is critical to 

accurately estimate the energy production over the lifetime of the turbine [6],[7].  

Also, wind turbine power output depends on the wind speed at the hub height and 

location of each turbine, among other factors.  The result is that an estimate of the 

hub height and location wind resource is necessary for accurate estimations of 

AEP.  Furthermore, when multiple wind turbines are installed at a site or when the 

met tower and the turbine are in different locations, the wind resource must be 

estimated at the location of each turbine, since terrain effects can alter the wind 

resource across a site [7],[8].  Wind resource evaluation is therefore comprised of 

three steps: wind resource measurement, long-term resource estimation, and hub 

height and location resource estimation.   

a. Measurement of the Wind Resource - In the traditional site assessment 

process, the wind resource at a site is measured using one or several 

meteorological towers (met towers).  When a large wind farm sited over a 

large area is under consideration, multiple met towers may be necessary to 

assess the wind resource, especially if the terrain is complex [8].  Met 

towers are equipped with wind speed and direction sensors (usually cup 

anemometers and wind vanes) positioned at two or more heights on the 

tower.  These sensors record the wind speed and direction, which are then 

reported as 10-minute or 1-hour averages.  These time series of data are 

the measured wind resource data.  A more detailed description of met 

towers is provided in Chapter II, Section 1.0.   
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A met tower is located at the site for at least a year.  This is the 

recommendation of the Wind Resource Assessment Handbook [1], and it 

is the standard practice in almost all site assessment [3],[4],[5].  The wind 

resource at a site tends to have pronounced seasonal variations, and so one 

year of data is needed to capture these seasonal effects.  Greater than a 

year of data allows for the capture of inter-annual variations in the wind 

resource as well, although rarely is the wind resource evaluated for more 

than two years.   

b. Estimation of the Long-Term Wind Resource - While wind resource 

measurement usually lasts for one year, the measured resource during this 

particular year may not be representative of the actual long-term resource 

at the site, due to inter-annual variations [6],[7],[9],[10],[11].  The long-

term resource is characterized by the mean wind speed and wind speed 

distribution that exists at a site over a very long period of time, when these 

inter-annual variations are averaged out.  Typically, twenty years is 

assumed to be a long enough time period to characterize the long-term 

wind resource.  Since a twenty year measurement campaign is far too long 

for practical purposes, the long-term resource must be estimated from the 

measured data.  The measured data, along with long-term data from a 

nearby site (the “reference site”), are generally used in a process called 

Measure-Correlate-Predict (MCP) to estimate the long-term wind resource 

at a site.  A detailed description of the MCP process is provided in Chapter 

II, Section 5.0.       
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c. Extrapolation of the Wind Resource to the Turbine Hub Height and 

Location - Met towers are generally between 40 m and 60 m tall, and so 

wind speed measurements usually take place at heights significantly lower 

than the hub height of a modern wind turbine.  Because wind speeds tend 

to increase with height, a wind shear model is used to extrapolate the 

estimated long-term wind resource to the hub height [12].  The wind shear 

model is created using the measured wind speed data.  A detailed 

description of wind shear is provided in Chapter II, Section 6.0. 

Furthermore, the met tower measurement location is often not the 

same as the eventual turbine location, or multiple turbines are installed 

when only a single met tower is used to measure the wind resource.  In 

these cases, the terrain can cause the wind resource to differ between the 

met tower locations and the eventual turbine location(s).  Flow modeling 

is typical used to adjust the wind resource according to the varying terrain 

at a site, and to aid in the placement of the wind turbines [8].  Flow models 

are often referred to as “Wind Energy Design Tools” [3].    

2. Wind Turbine Selection and Power Curve Adjustment – Once the wind resource 

is evaluated at a site, producing an estimate of the long-term hub height wind 

resource, a wind turbine is selected for the site.  The type of wind turbine selected 

depends on the wind resource at the site, the goals of the developer, the capacity 

of the local grid, and many other factors.  While maximizing energy production is 

one goal, issues such as durability are also important, especially at turbulent sites.  

A wind turbine is primarily characterized by its power curve, which defines the 
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wind turbine power output as a function of the incoming hub height wind speed.  

Wind turbine power curves are often adjusted for the specific site where the 

turbine is installed, as the air density, turbulence intensity, and wind shear can 

affect the power curve of the turbine.  Furthermore, the wind resource may also 

affect the cost of the wind turbine at the site, as windier and more turbulent sites 

generally require more expensive turbines [13].  More details on power curves are 

provided in Chapter II, Section 3.0. 

3. Energy Loss Estimation – A variety of factors can contribute to lost energy 

production from a wind turbine.  These factors include losses due to maintenance 

and repair, blade icing and fouling, array losses from other wind turbines (where 

upstream turbines reduce the energy available to downstream turbines), and more.  

These factors are highly site dependent, and their overall effect is to reduce the 

actual energy production at the site to a value less than the ideal energy 

production. 

4. Energy Production and Uncertainty Estimation – The estimated long-term hub 

height wind resource, the wind turbine power curve, and the energy losses are 

then combined to estimate the annual energy production (AEP) at the site.  This is 

an estimate of the average AEP over the lifetime of the turbines, since the long-

term wind resource is used in the calculation.  The uncertainty of the AEP is 

important to estimate as well.  The wind resource, power curve, and energy losses 

are all uncertain, and when they are combined to estimate the AEP, their 

respective uncertainties contribute to an overall AEP uncertainty.  This 

uncertainty is critical in estimating the risk associated with the potential venture. 
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5. Economic Evaluation – Finally, an economic analysis of the project is performed, 

which combines the expected AEP with the relevant economic parameters of the 

project, such as the financing, taxes, subsidies, and expenses.  The AEP is usually 

the most critical factor contributing to the economic success of a project.  The 

typical economic metrics for evaluating a project include the levelized cost of 

energy, the internal rate of return, and the net present value.  The uncertainty in 

the site assessment process is also a critical component to the economic 

evaluation of the project.  The estimated AEP is an uncertain quantity, and so the 

risk of the project must be accounted for as well.  This is often accomplished by 

requiring that when the 10th percentile value of AEP is used in the economic 

evaluation, the minimum debt service coverage ratio is at least one [14].  The 

issue of risk is described in more detail in later Chapters. 

 

The previous steps summarize the traditional method for wind energy site assessment 

that is used most frequently today.  The flow chart in Figure 1 shows a graphical 

representation of this process.  The yellow boxes represent processes or calculations, and 

the blue parallelograms represent sources of data.  
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Figure 1 – Flow Chart of the Traditional Wind Energy Site Assessment Process 

It should be noted that there are many alternatives to this process described above, 

and that permutations or fundamental changes to the process are certainly possible.  For 

example, the long-term wind resource can be estimated solely based on wind maps, 

atlases, or nearby reference sites, completely eliminating the actual measurement step.  
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On the other hand, the method for estimating the wind resource is well established, and a 

significant deviation from this process is unlikely when hiring a professional to perform a 

site assessment.  Moreover, the ability to secure a loan for a wind energy development is 

closely tied to the perceived risk associated with the estimate of the energy production 

and economic success of the project [14],[15].  The result is that the traditional site 

assessment process provides a fair representation of the standard process carried out in 

the wind energy industry today, and so it is used as a baseline for comparison when 

alternatives to the process are discussed in later Chapters.     

1.2 Notable Features and Drawbacks of Traditional Wind Energy Site Assessment 

The traditional site assessment process outlined above is widely accepted in the wind 

energy industry.  There are two important characteristics of the site assessment process 

outlined above that are especially relevant to this research: the length of the wind 

resource measurement campaign, and the height of the wind resource measurement.  Both 

characteristics partially result from the use of a met tower for the evaluation of the wind 

resource.   

Wind resource measurement campaigns are almost always at least one year long in 

the traditional site assessment process.  The practice of measuring the wind resource for 

at least one year is uniformly recommended in reputable manuals of site assessment 

[1],[3],[5].  This practice is accepted primarily because of seasonal variations in the wind 

resource.  The wind speed at a site often varies substantially over the course of the year.  

In the northeast United States, the winter months tend to have the highest wind speeds, 

and the summer months the lowest.  A full year of measurement is therefore needed to 

capture the seasonal variations at a site.  Moreover, the installation of a met tower 
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requires a crew of several people at least a full day to both raise and lower the met tower.  

Because of the difficulty of installation, it is unlikely that a met tower would be deployed 

for less than one year.   

In addition, most met towers are approximately 40 m to 60 m tall, and so they 

measure the wind resource at heights significantly lower than the hub heights of modern 

wind turbines.  Towers of this height (including labor and sensors) cost on the order of 

$20,000-30,000 [3].  Taller towers, with heights of 80 m and greater, are significantly 

more expensive ($100,000 or more), and are potentially much more difficult to permit 

and install.  The result is that the use of a standard met tower for site assessment 

necessitates a shear extrapolation model to estimate the hub height wind resource.   

While the length of the wind speed measurement and the necessity for shear 

extrapolation are accepted characteristics of the site assessment process, these features 

are potentially significant drawbacks of the process as well.  Along with the potentially 

lengthy permitting and construction phase of a wind energy project, the measurement of 

the wind resource at a site adds at least another year to the overall process of wind energy 

development.  The uncertain nature of subsidies and turbine availability encourages rapid 

development of wind energy projects, which is potentially in direct conflict with the 

lengthy wind resource measurement time.  Also, developers, consulting firms, or 

government sponsored wind energy assessment programs often have multiple candidate 

sites for site assessment, and so there is a strong motivation for quick measurement 

campaigns. 

Shear extrapolation, which is necessitated by the measurement heights of met towers, 

is a highly uncertain process, and shear profiles are extremely site dependent [16].  
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Furthermore, without hub height measurements of the wind resource there is no way to 

know a priori if the shear model that is employed is appropriate.  The result is that the use 

of shear extrapolation introduces a great deal of uncertainty into the estimate of the wind 

resource at the turbine hub height [17].   

Thus, while the traditional site assessment process is well established, there are 

undesirable characteristics inherent in this process, which at least partially result from 

using a met tower for the evaluation of the wind resource.      

2.0 Overview of Dissertation 

This dissertation seeks to both improve the traditional site assessment process, and to 

offer alternative strategies for wind resource measurement that can be utilized to address 

the inherent drawbacks in traditional site assessment.  The results and methods presented 

are applicable to wind energy consultants and developers, as well as government 

sponsored site assessment programs.  The overall goal is to present a comprehensive 

strategy for site assessment, in which the specific priorities of a project dictate the 

particular approach taken in the site assessment [18]. 

Some of the strategies presented rely on the use of a ground-based device, such as 

SODAR or LIDAR, for the evaluation of the wind resource.  Portable towers (“jack-up” 

towers), which are shorter than standard 50 m met towers, may also be used in some 

instances.  Ground-based devices are described in more detail in Chapter II, Section 2.0.  

Ground-based devices are portable and capable of measuring at the hub height of modern 

wind turbines.  These qualities are leveraged in several of the strategies that are 

developed, and enable potentially more efficient, accurate, and precise methods for 

conducting wind energy site assessment.  Finally, it should be explicitly stated that these 
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new strategies for measuring the wind resource assume that reliable and accurate 

measurements are possible using these devices. 

The contributions of this dissertation fall into three major categories:   

1. New analysis approaches for wind energy site assessment are presented in this 

dissertation, which offer improved methods for analyzing components of wind 

energy site assessment.  Specifically, this research develops new approaches to 

uncertainty analysis and decision making in wind energy site assessment.  These 

approaches can lead to better estimates of uncertainty in the site assessment 

process, and more rapid, efficient, and affordable site assessment campaigns. 

2. New technical approaches for monitoring the wind resource are described.  This 

research proposes alternative methods for measuring the wind resource at a site.  

Specifically, two technical approaches are presented, with the capability of either 

drastically improving the efficiency, or significantly reducing the uncertainty of 

site assessment. 

3. A unified framework for approaching site assessment is developed, and software 

tools are created in order to execute this approach.  This methodology integrates 

the new analysis methods and technical approaches, along with economic analysis 

methods, into a coherent approach to wind energy site assessment. This 

methodology can then be implemented in a functional software tool. 

   

The dissertation is organized into six major categories, each its own Chapter, along 

with Background and Conclusion Chapters.  A brief overview of the content in each 

Chapter, except for the Background and Conclusion Chapters, is now presented.   
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2.1 Site Assessment and Uncertainty – Chapter III 

Chapter III presents an in-depth analysis of the traditional site assessment process, 

with a focus on uncertainty analysis, as well as a new approach to handling uncertainty in 

the site assessment process.  Each of the steps in the site assessment process, outlined 

above in Section 1.1, is reviewed, and a comprehensive listing of the uncertainty in each 

step is compiled.  A detailed description of methods to estimate the wind resource and the 

energy production at a site is presented, as well as mathematically rigorous methods for 

handling uncertainty in the process.  Furthermore, the uncertainty analysis techniques 

developed in Chapter III are generally applicable to all site assessment strategies, 

including the new technical approaches for measuring the wind resource presented in 

Chapters V - VI. 

2.2 Objective Decision Making in Site Assessment – Chapter IV  

While a full year of measured wind data may be desirable for site assessment, MCP 

can be applied to any length of measured data to estimate the long-term wind resource, 

including shorter measurement lengths on the order of weeks or months.  Because of the 

lengthy installation process, however, it is unlikely that a met tower would be removed 

from a site in less than a year, regardless of the wind resource.  The portability of ground-

based devices eliminates this constraint on the measurement length, allowing for shorter 

wind resource measurement campaigns.   

The research in Chapter IV describes the development of a new analysis approach: an 

objective decision making approach to wind energy site assessment.   At any point in the 

site assessment process, one can choose between stopping measurement and building a 

wind farm, stopping measurement and not building a wind farm, and continuing 
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measurement.  A decision making framework is developed, in which the three options are 

evaluated and compared after some period of data is measured, and the “best” of the three 

choices is determined.  A recursive dynamic program is used to evaluate the option to 

continue measurement.   

This method is especially well suited for an entity that has planned multiple site 

assessments.  Furthermore, the objective decision making method can be used in concert 

with the round robin site assessment method (described next).  These strategies are 

potentially complimentary, and allow for a great deal of flexibility and efficiency in 

deciding when and how long site assessment should occur at various sites.  This strategy 

can be used with met towers as well, although ground-based devices are primarily 

considered because of their portability. 

2.3 The Round Robin Site Assessment Strategy – Chapter V 

The “round robin site assessment strategy” is a new technical approach to wind 

resource measurement.  The premise of the round robin strategy is to measure the wind 

resource at multiple sites in a single year using a single portable ground-based device, but 

to discontinuously distribute the measurement time at each site over the whole year, so 

that the total measurement period is comprised of smaller segments of measured data.  

This measured data set is then utilized in the MCP process to predict the long-term wind 

resource at the site.  The round robin site assessment method aims to increase the number 

of sites assessed in a single year, without the sacrifice in accuracy and precision of the 

MCP predictions that usually accompanies shorter measurement periods.   

The round robin site assessment method also addresses the two drawbacks of the 

traditional site assessment process.  By using a portable ground-based device to measure 
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the wind resource at multiple sites in a single year, the average wind resource 

measurement time per site is decreased substantially.  Furthermore, the ground-based 

devices measure the wind resource at the hub height of a wind turbine, and therefore 

obviate the need for shear extrapolation.  This method is especially well suited for an 

entity that has planned multiple site assessments, such as a state institution conducting a 

state-wide site assessment program.   

2.4 The Short-Term Shear Measurement Strategy – Chapter VI 

The “short-term shear measurement” is another new technical approach to wind 

resource measurement.  This strategy relies on augmenting the one year of met tower 

measurements in the traditional site assessment process with short-term measurements 

from a ground-based device.  The goal is to improve the accuracy of shear extrapolation 

from met tower data without the need to deploy a ground-based device at a site for a long 

period of time. 

This strategy is complimentary to the traditional site assessment process, not 

substitutive.  It is used in the traditional site assessment process to help mitigate the 

measurement height limitations of met towers.  The short-term shear measurement 

strategy is extremely useful when multiple concurrent site assessments are in progress, 

each using a met tower, and only a limited number of ground-based devices (e.g., one) 

are available.   

2.5 Wind Energy Economic Analysis – Chapter VII 

Once the wind resource at a site is evaluated, and an estimate of the energy 

production is made, an economic analysis of the site is undertaken to determine the 
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viability of a wind energy development.  Wind energy economic analysis can take on a 

variety of forms, from simple to very complex.  Chapter VII presents two components of 

wind energy economics.   

First, Chapter VII describes the development of a wind energy financial calculator, 

which is a general tool for analyzing wind energy finances.  The calculator utilizes cash 

flow methods for determining the relevant economic results of wind energy projects, and 

provides a useful means for analyzing proposed wind energy developments.  While there 

is no “correct” method for analyzing the economics of a wind farm (e.g., payback 

methods, levelized cost method, EPRI-TAG, etc), the cash flow method is similar to what 

a business or utility would actually do in evaluating a potential development.  

Furthermore, a cash flow method analysis is not particularly easy to implement, at least in 

relation to other methods, and so it lends itself well to programs that can perform the 

iterations automatically.  The calculator has a graphical user interface (GUI) for easy use, 

and it is created as an executable program so it can be utilized on any computer.   

Second, new and alternative methods for assessing and valuing wind energy, 

especially in its relation to other energy sources, are presented.  These particular methods 

are by no means exhaustive; instead this review is meant to highlight a few particular 

areas in which alternative methods of analysis provide insight or different perspectives on 

the merit of wind energy from an economic perspective.   

The material in Chapter VII is not original research; rather it presents the 

development of a tool based on established methods of economic analysis, and a 

consolidation of a variety of material focused on alternative means of evaluating energy 

production.   
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2.6 Streamlined Site Assessment Methodology – Chapter VIII 

The research and tools developed in Chapters III – VII encompass a variety of 

strategies and methods for conducting the site assessment process.  Some approaches are 

complimentary, while others are mutually exclusive.  These strategies and methods are 

components of an integrated approach to site assessment: the streamlined site assessment 

methodology (SSAM).  The flow chart in Figure 2 depicts this methodology; yellow 

boxes indicate processes or analyses, and the green diamonds indicate decision points.   

The traditional site assessment process is a potential path in the SSAM process.  It 

would entail choosing to install a met tower at the first decision point in Figure 2, 

choosing not to utilize a ground-based device at the second decision point, and choosing 

not to utilize the objective decision making approach at the third decision point.   

Another notable feature of the SSAM process is that the uncertainty analysis 

developed in Chapter III is universally applicable, as it is employed for all the potential 

site assessment strategies.  This is also the case for the economic analysis methods 

described in Chapter VII.  Finally, Figure 2 emphasizes that the round robin strategy and 

the objective decision making strategy are complimentary and can be used in parallel. 

The SSAM approach is implemented into a software program to allow its application 

to wind energy site assessment.  Chapter VIII describes the development of the SSAM 

software.  The software effectively implements the various strategies and analyses in the 

SSAM approach, allowing for an extremely useful and flexible tool for conducting site 

assessment.  The software provides a convenient unification of this research.  
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CHAPTER II  

BACKGROUND 

This Chapter provides background information on a number of subjects relevant to 

this research.  Each Section is meant to provide basic background knowledge, 

information, and assumptions for later use in the research, but not an exhaustive review 

of the topic. 

1.0 Meteorological Towers and Wind Resource Measurement 

The traditional site assessment process, described in Chapter I, Section 1.1, relies on 

the use of met towers and wind speed and direction sensors in order to evaluate the wind 

resource at a site.  The most common wind speed and direction sensors are cup 

anemometers and wind vanes.  This Section presents some basic background information 

on this process. 

1.1 Meteorological Towers 

Met towers are the most common means of assessing the wind resource at a location 

that is under consideration for wind energy development.  Most met towers used in wind 

resource assessment are tall tubular steel towers, between 40 m and 60 m tall, with 

diameters of approximately 15-20 cm (6-8 in). These towers are secured via sets of guy 

wires, which connect from the tower at several heights to sets of anchors on the ground.  

The left diagram in Figure 3 shows a schematic of a 50 m NRG met tower [19].  Met 

towers of this type cost approximately $10,000-20,000 [20].  Lattice towers are also 

sometimes used to mount wind monitoring equipment. 
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Figure 3 – 50 m Met Tower Schematic / Raising of a 50 m Met Tower   

The installation of a met tower is an involved process, and requires a multi-person 

crew and at least a full day to complete.  A common means of raising or lowering a met 

tower is with a “gin pole,” which is a smaller tubular tower, connected to the met tower, 

and raised or lowered using a winch.  A schematic of this process is shown on the right 

side of Figure 3 [19].  Guy wires on the sides of the met tower are used to align the tower 

as it is raised or lowered.  Finally, guy wires in four directions are used to stabilize the 

met tower once it is vertical.   

Met towers usually must be approved and permitted by the town in which they are 

located [1].  Because met towers are temporary structures, this process can be quite easy 

to complete.  However, local opposition can sometimes make the permitting of a met 

tower much more difficult. Other considerations when installing a met tower include 

leasing fees, liability, insurance, and the surrounding terrain [1].   
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1.2 Wind Resource Measurement: Cup Anemometers and Wind Vanes 

The wind speed and direction are generally measured using anemometers for the wind 

speed, and wind vanes for the direction.  These sensors are usually positioned at two or 

three heights on the tower, with two anemometers and one vane at each height.  The 

redundant anemometers help combat tower shadow, which occurs when the wake of the 

tower affects the measurement of an anemometer.  At each height, booms are attached to 

the tower extending horizontally.  These booms are generally 2-3 m (6-9 ft) in length, and 

the wind monitoring sensors are secured to the end of the booms.  By positioning the 

sensors away from the tower, the effects of the tower wake are reduced.  A picture of 

booms extending off of an installed met tower is shown on the right in Figure 4.  The 

sensors usually produce data that give the average wind speed and wind direction over 

10-minute intervals.  These data are recorded and stored by a logger box at the bottom of 

the tower, which is connected to the sensors via sensor cables.  

The most common type of anemometer used for wind energy site assessment is the 

cup anemometer [21].  A popular three-cup anemometer made by NRG Systems, the 

Maximum 40 anemometer, is shown on the left in Figure 4 [20].  This anemometer costs 

approximately $150 [20].  The performance of a cup anemometer is determined by a 

variety of factors, including its size and weight, bearing friction, and cup design 

[21],[22].  The accuracy of a cup anemometer is generally assumed to be approximately 

0.1 m/s (1-2% of the mean wind speed), based on wind tunnel tests [23],[24],[25],[26].  

The accuracy of wind speed measurements is discussed in great detail in Chapter III.  The 

wind direction is usually measured using a wind vane.  An NRG wind vane is also shown 

on the left in Figure 4 [20].   
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Figure 4 – NRG Anemometer, Wind Vane / Booms, Sensors on a Met Tower 

Cup anemometers are often characterized by their distance constant.  The distance 

constant indicates how rapidly the anemometer responds to changes in the wind speed.  

Formally, the distance constant is equal to the length of fluid flow past the anemometer 

required to cause it to respond to 63.2% of a step change in speed [21].  Anemometers 

with small distance constants respond rapidly to changes in the wind speed.  Most cup 

anemometers used for wind resource assessment, such as the Maximum 40, have distance 

constants less than 5 m.  In general, cup anemometers with small distance constants can 

be classified as “point measurements” of the wind speed, and so they measure the 

instantaneous wind speed at a given point in space and a given time. 

The overall cost of a wind monitoring campaign using a met tower, anemometers, and 

wind vanes is approximately $20,000-30,000, although it could vary depending on the 

price of labor [3]. 
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2.0 Ground-Based Wind Speed Measurement Devices 

LIDAR and SODAR are relatively new ground-based devices that can be used for 

wind resource assessment.  Both devices are portable and capable of measuring the wind 

resource at wind turbine hub heights, as well as multiple heights simultaneously.  

Furthermore, in the new technical approaches for wind resource measurement described 

in Chapter V-VI, it is assumed that these devices are capable of producing unbiased 

estimates of the mean wind speed, equivalent to that which would be measured using a 

cup anemometer on a met tower.  These devices are now described in greater detail. 

2.1 Sonic Detection and Ranging (SODAR) 

SODAR systems are ground-based wind speed measurement devices that utilize 

sound waves to measure the wind speed.  While SODARs were first developed in the 

1960’s and 1970’s for this purpose, it is only recently, with the advent of very high 

turbine hub heights, that SODARs have begun to be utilized for wind resource 

assessment [27].  This Section describes the basic operation of a SODAR, as well as 

some of its drawbacks, and its potential role in wind resource assessment. 

2.1.1 Basic Operation of a SODAR 

The motion of the atmosphere is inherently turbulent, with both thermally and 

mechanically induced eddies.  The majority of SODARs today operate by emitting 

acoustic pulses at certain frequencies, which reflect off of the turbulent eddies in the 

atmosphere.  The energy in the pulses is scattered, and a portion of this energy is returned 

to a receiving antenna, at some shifted frequency [28].  Most SODARs are monostatic, 

and so the receiving antenna and the transmitting antenna are located in the same place 
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[27].  The shift in the frequency of the pulse is called the Doppler shift, which can be 

used to calculate the movement of the turbulent eddy from which the pulse is reflected.  

By emitting pulses in multiple axes (a multi-axes SODAR), a SODAR can determine 

the movement of the atmosphere in multiple directions, and so the wind speed and 

direction can be determined [27].  Furthermore, the vertical profile of the atmospheric 

movements can be determined by measuring the returned signal as a function of time.  

The length of the delay in receiving the signal is related to the height at which the signal 

is reflected.  SODARs are typically capable of measuring to heights of a few hundred 

meters.  The result is that a SODAR can be used to determine the wind speed and 

direction profile as a function of height.   

2.1.2 Potential Drawbacks on SODAR 

While potentially extremely useful for wind resource assessment, SODARs do suffer 

from some drawbacks.  First, SODARs generally do not operate when it is raining, and so 

they cannot measure data during these periods.  Second, SODARs are susceptible to 

noise contamination.  Background noise near the frequency of the emitted pulse can 

contaminate the signal, especially data from higher heights [27].  Third, and most 

importantly, ground clutter can severely affect the SODAR operation.  The emitted signal 

can reflect off of obstacles near the SODAR, such as trees or buildings.  This reflected 

signal has zero frequency shift, and so appears to have zero velocity.  The result is that 

ground clutter causes the wind speed measurement to be biased low.  In general, it is 

much more effective to position a SODAR in an open area.  Lastly, SODARs emit 

acoustic pulses, and the noise from their operation can be bothersome to surrounding 

residents, and preclude their deployment in certain areas. 
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2.1.3 SODAR and Wind Resource Assessment 

SODAR systems are potentially extremely useful devices for wind resource 

assessment [29].  The most obvious advantage is their ability to measure both at multiple 

heights, and at much higher heights than a met tower.  The result is that the hub height 

wind speed and the wind speed profile across the rotor face of a wind turbine can be 

measured using a SODAR.  SODARs are also much more easily installed than a met 

tower, requiring only a single person and a few hours of installation time.  A picture of an 

ART VT-1 SODAR is shown in Figure 5 [28].  A SODAR of this type costs 

approximately $40,000. 

 
Figure 5 – ART VT-1 SODAR  

As stated above, SODARs have some drawbacks.  Ground clutter is the most severe 

potential drawback of a SODAR, as it is capable of reducing the estimate of the mean 

wind speed by 20% or more [30].  When the SODAR is positioned in a very open area, 

such as a large field or prairie, ground clutter effects are negligible.  However, if the 

SODAR is used in an area with nearby trees or buildings, ground clutter effects can be 
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very important.  Rogers et al. investigate the mitigation of ground clutter effects in 

SODAR, with substantial success [30].  Data processing techniques for filtering out 

corrupted data are developed, with the resulting SODAR measurements being much 

closer to nearby anemometry measurements.  Overall, along with growing experience in 

SODAR positioning and site selection, it appears that ground clutter effects can be 

greatly reduced using these processing methods. 

Because anemometers are the industry standard method for measuring the wind 

resource for wind energy applications, the utility and functioning of a SODAR is often 

assessed by comparing it to a cup anemometer.  One consideration when using SODARs 

for wind resource assessment is that they are volume-averaging devices, in contrast to 

anemometers, which are point measurement devices.  Small scale turbulence within the 

SODAR measurement volume is averaged out in SODAR measurements.  In contrast, a 

fast responding anemometer, with a distance constant less then 5 m, is affected by these 

small scale variations.  Thus, SODAR and anemometers measure fundamentally different 

instantaneous wind speeds.  This issue is mitigated when the data are averaged over a 10-

minute period of time, which is standard.  The effects of local turbulence on the 

anemometer are likely to be averaged out over this period of time, and so the average of 

the SODAR and the anemometer measurements are likely to be much closer together.   

On the other hand, anemometers and SODARs often calculate the wind speed 

differently.  Anemometers calculate the instantaneous scalar wind speed, and then these 

values are averaged over a 10-minute period to yield the average scalar wind speed.  

SODARs typically calculate the average Cartesian components of the wind speed, and 
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then compute the vector average wind speed.  The scalar wind speed is typically 1-2% 

higher than the vector wind speed [28].  

In general, it is important that unbiased estimates of the wind resource that would be 

obtained using a cup anemometer can be determined using a SODAR.  Because SODARs 

and anemometers measure the wind speed in a fundamentally different manner, their 

measured values are not necessarily equivalent.  It is therefore not necessarily proper to 

utilize SODAR data in lieu of anemometer data.  For example, the power output of a 

wind turbine, defined by its power curve (see Chapter II, Section 3.0) is referenced to the 

wind speed measured using a cup anemometer [13].  If a SODAR is used to measure the 

wind resource at a site, the estimated mean wind speed using the SODAR must closely 

match the mean wind speed that would be measured using an anemometer, in order to 

accurately estimate the annual energy production at that site.  Target site SODAR data 

could be used in the MCP process along with reference site anemometry data as well (see 

Chapter II, Section 5.0).  In this case, a correlation is created between concurrent SODAR 

and anemometer data, implying that they are measuring equivalent wind speeds.    

Overall, it is imperative that SODAR data used in site assessment approximate, as 

closely as possible, the wind speed that an anemometer would measure.  The results of 

Rogers et al. indicate that data processing can be used to remove the effects of ground 

clutter, yielding a very good agreement between SODAR data and nearby anemometer 

data [30].  Careful calibration of a SODAR with a met tower is also recommended [29].  

The effects of the different averaging methods can be corrected for as well.  In general, it 

is assumed in this research that reliable SODAR measurements are possible, with some 
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reasonable uncertainty, which provide an unbiased approximation of the wind speed that 

would be measured using anemometers.    

2.2 Light Detection and Ranging (LIDAR) 

LIDAR systems are ground-based wind speed measurement devices that utilize 

electromagnetic radiation to measure the wind speed.  They operate in a similar fashion 

to SODARs in that they use the Doppler shift to calculate the wind speed and direction.  

The use of LIDARs for wind resource assessment is an extremely recent development, as 

commercial systems have only become available in the last two years [31].  This Section 

describes the basic operation of a LIDAR and its potential role in wind resource 

assessment. 

2.2.1 Basic Operation of a LIDAR 

A LIDAR operates by emitting a beam of light upwards into the atmosphere.  The 

radiation interacts with natural aerosols in the air, and some of the energy is reflected 

back to the LIDAR.  The Doppler shift of the reflected light is then used to determine the 

speed and direction of the wind.  In order to measure horizontal wind speeds, the beam 

from the LIDAR must be tilted off the vertical by some angle.  Many LIDARs sweep the 

beam in a circle about the vertical axis, which allows for the horizontal wind speeds to be 

determined.  The vertical profile of the wind speeds can be determined as well using a 

LIDAR, and so they can be used to measure the wind speed at multiple heights up to a 

few hundred meters [32].  
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2.2.2 Commercial LIDAR Systems 

Currently, there are very few commercially available LIDAR systems for wind 

energy applications.  The most developed seems to be the QinetiQ Ltd. ZephIR, which is 

a commercially available product [33].  This instrument is a 1.55μm continuous wave 

(CW) coherent LIDAR that has a laser output power of 1-Watt with a measurement range 

from 10-150 m [32].  A picture of the ZephIR is shown in Figure 6.  These devices cost 

on the order of $150,000.   

 
Figure 6 – QinetiQ ZephIR LIDAR 

2.2.3 LIDAR and Wind Resource Assessment 

LIDAR systems, like SODARs, are potentially extremely useful devices for wind 

energy site assessment, as they are portable and capable of measuring at the hub height of 

a wind turbine.  While LIDAR systems are similar to SODARs, there are some important 
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differences.  The most important difference for wind energy site assessment is that 

LIDARs are not affected by ground clutter.  Whereas ground clutter can cause low 

biasing in SODAR systems, this is not an issue for LIDAR, and so the potential for 

grossly inaccurate wind speed measurements is reduced.  Like SODAR, LIDAR is a 

volume averaging device, as opposed to cup anemometers which are point measurements.   

The performance of LIDARs for wind resource assessment appears to be very 

promising.  While there is not a great deal of experience with the use of LIDARs, 

preliminary evaluations of the ZephIR LIDAR show a high level of performance.  The 

evaluations of the ZephIR from three separate institutions compare the LIDAR wind 

speed measurements to cup anemometer wind speed measurements from a met tower, 

and the results indicate very high correlation coefficients (~0.99) between the 

measurements, with average errors less than 1% [31],[33],[34].  Overall, the evaluations 

indicate that a LIDAR system has the potential to be utilized for wind resource 

assessment in lieu of cup anemometry.   

It is important that unbiased estimates of the wind resource that would be obtained 

using a cup anemometer can be determined using a LIDAR.  This is the case for SODAR 

as well.  Energy production estimates and MCP predictions using LIDAR data are only 

valid if the wind speed data from the LIDAR is a close approximation to the wind speed 

that a cup anemometer would have measured at the location.  The results from the 

evaluations of the ZephIR indicate that the LIDAR can provide a very close 

approximation to cup anemometer measurements.  In general, it is assumed in this 

research that reliable LIDAR measurements are possible, with some reasonable 
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uncertainty, which provide an unbiased approximation of the wind speed that would be 

measured using anemometers.      

3.0 Wind Turbine Power Curves 

The performance of a wind turbine is often characterized by its power curve.  The 

power curve indicates the instantaneous power output of the turbine as a function of the 

wind speed at the hub height of the turbine.  The power curve is a simplification of wind 

turbine performance, as the instantaneous air density, turbulence, and wind shear also 

affect the power output, along with the hub height wind speed [35].  Often, power 

performance testing is necessary at a wind energy development site in order to adjust the 

power curve for the specific site [36].  Nonetheless, power curves are an extremely useful 

characterization of wind turbine performance, and so they are used often in this research. 

Most modern wind turbines are variable speed, pitch controlled turbines, and so they 

operate near their optimal tip speed ratio a portion of the time when the wind speed is 

above the cut-in value and below the rated value, and at constant power for wind speeds 

greater than the rated value and less than the cut-out value.  The result is a nearly cubic 

increase in the wind turbine power as the wind speed increases to the rated value, 

depending on the speed range, at which point it produces the constant rated power.  A 

power curve from a GE 1.5 MW turbine is shown in Figure 7.  This power curve is a 

good generalization of modern power curves. 

In general, all analyses in this research assumes that the wind turbine is a variable 

speed, pitch controlled turbine, with a power curve qualitatively similar to the GE 1.5 

MW power curve shown in Figure 7.  The wind turbine power curve is generally labeled 

PW(U). 
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Figure 7 – GE 1.5 MW Power Curve 

4.0 The Weibull Distribution 

The Weibull distribution is used extensively in this research to model wind speed 

distributions.  The Weibull distribution is commonly used for this purpose, and relies on 

two parameters: the scale factor c (c is sometimes referred to as A) and the shape factor k.  

The Weibull probability density function, where U is the wind speed, is given in Eq. 1, 

and a plot of the Weibull probability density function for c=8 m/s and k=2 is shown on 

the left in Figure 8.   
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Figure 8 – Example Weibull Distributions 

Often the Weibull distribution provides a good approximation of the actual wind 

speed distribution at a site, although this is not always the case.  Shown in Figure 8 on the 

right is an example of a Weibull distribution fit to actual wind speed frequency 

distribution data.  For this example, the Weibull distribution provides a good fit to the 

wind speed frequency distribution.   

A statistical model approximation to the wind speed distribution, as opposed to 

simply using the measured time series or the frequency distribution of the measured data, 

is useful for several reasons.  First, a statistical model allows for the shape of the 

distribution of the wind resource, and therefore the potential to produce energy from a 

wind turbine at the site, to be quantified by the parameters of the model.  In the case of 

the Weibull distribution, the shape of the distribution of the wind resource is easily 

summarized by the values of c and k.  Second, a statistical model is extremely useful for 

handling uncertainty both in wind resource assessment and in the AEP estimation.  The 
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use of the Weibull distribution for uncertainty analysis in site assessment is explored in 

detail in Chapter III.  On the other hand, a statistical model approximation can introduce 

error into the process, especially when the model does not provide a good fit to the data.   

4.1 Weibull Parameter Estimation 

There are several methods for estimating the Weibull parameters from a wind speed 

time series.  These methods include: empirical methods, method of moments, maximum 

likelihood estimates, least square linear regression, and chi-squared methods.  In general, 

an empirical method is used in this research, due to its simplicity.  The empirical method 

is shown in Eq. 2, where σU is the standard deviation of the wind speed data, U,¯  is the 

mean wind speed, and Γ is the gamma function [21]. 
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4.2 Energy Production Estimates using the Weibull Distribution 

The Weibull distribution can be used to estimate the energy production of a wind 

turbine.  The average power output of the turbine can be found by integrating the product 

of the wind speed distribution, p(U), and the power curve, PW(U), over all values of wind 

speed, U, and then multiplying by the energy losses, ELF.  AEP is simply the average 

power multiplied by the number of hours in a year, 8760.  This is shown in Eq. 3. 
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The capacity factor is often used as a measure of the energy production, in lieu of 

AEP.  The capacity factor is a non-dimensional number, equal to the average power 

divided by the rated power of the wind turbine, PR.  The equation for the capacity factor, 

CF, is shown in Eq. 4.   
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4.3 Justification of the use of the Weibull Distribution 

A statistical model approximation such as the Weibull distribution, while convenient, 

can introduce error into the calculation of the energy production, especially when the 

model does not provide a good fit to the data.  An investigation to assess the validity of a 

statistical model approximation to the wind speed distribution is now described: 

1. 30 different sites, with at least 3 years of data, are selected. 

2. For each site, the mean wind speed and the Weibull parameters are calculated. 

3. The actual frequency distribution is also determined, using 0.5 m/s bins. 

4. The energy production for a GE 1.5 MW wind turbine is calculated, using the 

actual wind speed frequency distribution, as well as the Rayleigh and Weibull 

approximations to the wind speed distribution.  The Rayleigh distribution is 

simply the special case of the Weibull distribution with k=2, and is also 

commonly used to model the wind speed distribution.  The energy production 

when using the Weibull or Rayleigh distribution is calculated using Eq. 3. 

 

The results are calculated by comparing the energy production estimates for the two 

statistical models to the estimate using the actual frequency distribution.  The actual 
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frequency distribution is considered the “true” value.  In general, these results are 

dependent on the bin width used to summarize the frequency distribution, and the method 

used to sum over the bins.  The important results are: 

• On average, using the Weibull distribution causes a 0.5% overestimation of the 

energy production, compared to using the actual frequency distribution.  The error 

in the estimate has an approximately 1% standard deviation.   

• The Rayleigh distribution overestimates the energy production by 3% on average, 

with a standard deviation of 7%.   

 

Clearly the Weibull distribution is the superior statistical model compared to the 

Rayleigh, as the error and the variability in the estimates are much lower.  Overall, it 

appears that the use of the Weibull distribution to represent the wind speed distribution 

and calculate the energy production from a wind turbine is justifiable.  

5.0 Measure-Correlate-Predict 

Wind speeds at a site vary with respect to a number of time scales, including diurnal 

variations, seasonal variations, and inter-annual variations.  Whenever the wind resource 

is measured at a site, variations at time scales longer than the measurement length can 

cause the measured data to be unrepresentative of the actual long-term wind resource at 

the site.  In the case of inter-annual variations, twenty years of measured data are often 

considered sufficient to capture the true long-term wind resource, and therefore average 

out the inter-annual variations [9],[11].  Since one of the primary goals of wind energy 

site assessment is to estimate the long-term wind resource at a site, it is critical to account 
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for these variations at longer time scales.  On the other hand, measuring the wind 

resource for twenty years is not realistic.  

Measure-Correlate-Predict (MCP) is a frequently used method for estimating the 

long-term wind resource at a “target site” that is being assessed for wind energy 

development [37].  MCP utilizes a nearby site, called the “reference site,” with a multi-

year data set, as well as data concurrent with the target site.  The steps involved in the 

general MCP process are: 

1. Measure the wind speed at the target site.  This is the “measure” step. 

2. Obtain wind speed data from a nearby reference site, and find the concurrent data 

between the target site and the reference site. 

3. Create a functional relationship between the concurrent data sets, which yields the 

target site wind speed (and possibly other conditions) as a function of the 

reference site wind speed (and possibly other conditions).  This is the “correlate” 

step. 

4. Apply this functional relationship to the full reference data set to estimate the 

long-term wind resource at the target site.  This is the “predict” step. 

 

The actual implementation of the MCP process can be visualized using Figure 9.  The 

plot on the left shows wind speed data from two nearby sites [38].  The upper time series 

is the reference site, with approximately seven years of data, and the lower time series is 

the target site, with one year of data.   

The concurrent data for the two sites, which are the one year of overlapping data in 

2004, can then be displayed in a scatter plot, shown on the right.  This plot shows the 
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target site data on the y-axis and the reference site data on the x-axis.  Also shown in the 

plot is a linear fit to the data (more details on MCP models is provided later), which is 

one type of MCP correlation method that can be used.  This model can then be applied to 

the seven years of reference site data, yielding a prediction of the long-term wind 

resource at the target site.   
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Figure 9 – Reference/Target Site Data / Variance Ratio Fit to Concurrent Data 

The utility of MCP lies in the utilization of reference site data sets with much longer 

data lengths than the measured target site data.  The long-term reference site data provide 

information about variations in the wind resource at time scales longer than the length of 

the target site data.  A simple way to look at MCP, if one year of target site data is 

measured, is that it indicates if that particular year at the target site is a windy year or not.  

MCP is not restricted to a full year of target site data, however.  Any length of target site 

data can be used in the MCP process.   

5.1 A Review of MCP Models 

The actual functional correlation in MCP, relating the reference site wind speed to the 

target site wind speed, can take on a variety of forms [37],[39].  Many models bin the 



 40

data by direction, and so model parameters are calculated and applied for each direction 

bin.  These direction bins can be simple bins of equal size, such as eight direction sectors 

of 45 degrees each, or more complex binning methods can be used, such as dynamic 

sectoring [40] or matrix methods [41].     

The types of models used in MCP include linear models [42],[43], non-linear models 

[40],[44], models that utilize temperature data [45], artificial neural networks [46],[47], 

Markov chain models [48], joint probability models [49], and more [50].   

Rogers et al. [37] and Anderson et al. [39] provide detailed reviews of a variety of 

MCP methods, as well as a comparison of the performance of several methods.  

Anderson et al. point out that the more complex non-linear and neural network models do 

not perform substantially better than the simple 2-parameter linear models.  Rogers et al. 

also develop a linear model, the “Variance Ratio” method, which performed well 

compared to three other models.  This model is discussed next.   

5.2 The Variance Ratio MCP Method 

The Variance Ratio method is used exclusively in this research, for several reasons.  

First, linear models are simple to implement.  Second, more complex non-linear and 

neural network models have not been shown to provide substantially better predictions.  

Finally, in one comparison to other linear models, the Variance Ratio method performs 

the best [37].  Overall, the Variance Ratio method appears to provide an appealing 

combination of performance and simplicity.   

The Variance Ratio method is a linear model, and the parameters in the model are set 

to ensure that the variance of the predicted target site data is equal to the variance of the 

actual target site data.  The formulation of the Variance Ratio method is shown in Eq. 5, 
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where μy and μx are the respective means of the concurrent target site and reference site 

data, and σy and σx are the respective standard deviations of the concurrent target site and 

reference site data.  The long-term reference site wind speed data are denoted by x, and 

the predicted target site wind speed data are y’.  An example fit to concurrent data is 

provided in Figure 9.  In that example, A = 1.18 and B = -0.34.   
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5.3 Uncertainty in MCP Predictions 

MCP is an effective method for estimating the long-term wind resource at a site from 

short-term measured data [51].  To be truly useful in wind energy applications, the 

uncertainty of the MCP predictions must be estimated as well [52].  For a linear 

regression model, Derrick develops an approach for estimating the uncertainty of the 

MCP prediction [51].  However, as shown by Rogers et al., this approach significantly 

underestimates the actual uncertainty of the predictions [52].  This is because the wind 

data relationship between two sites is serially correlated, and so linear regression theory 

cannot be used to estimate the uncertainty associated with the MCP prediction.   

An alternative approach to estimating the uncertainty is proposed by Rogers et al. that 

uses a jackknife estimate of variance [52].  This method determines the variability of the 

prediction by dropping out segments of the concurrent data set.  The results of the 

investigation indicate that the jackknife estimate of uncertainty provides a significant 

improvement over linear regression theory in estimating the uncertainty associated with 

the MCP procedure, although there is still some underestimation of the uncertainty on 
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average.  The jackknife estimate of variance is used often in this research to estimate the 

uncertainty of MCP predictions.  

5.4 MCP Parameters Selection 

There are a variety of parameters that can be adjusted when implementing the 

Variance Ratio MCP method.  These parameters can affect the performance of the MCP 

predictions, so it is important to state their values for consistency and clarity.  This 

Section briefly describes three important MCP parameters, and the values that are used in 

all later analyses.  A rigorous justification for the choice of these parameters is not 

provided.  Instead, the parameters are chosen to be certain values because they appeared 

to be “good enough.”  The parameters are: 

• The number of direction sectors.  This parameter determines the number of bins 

that the target site and reference site data are grouped into by direction for MCP.  

The use of direction sectors is meant to account for varying relationships between 

the target and reference site as a function of direction.  Eight or twelve direction 

sectors are common [51],[53].  This research uses one direction sector, as the 

accuracy and precision of the MCP predictions are often fairly insensitive to the 

number of direction sectors.   Using a single direction sector is also useful when a 

small amount of target site data are available, as binning the data by direction can 

result in a very small amount of data length in some bins. 

• The cutoff wind speed.  This parameter determines the minimum target site or 

reference site wind speed for a data point to be used in the correlation step of 

MCP.  That is, wind speed values less than a certain cutoff value are not used to 

calculate the fit to the concurrent data (e.g. the fit in Figure 9).  This parameter is 
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utilized because there can be much more variability in the relationship between 

the two sites at low wind speeds, and this variability does not necessarily indicate 

any actual relationship between the sites [53].  All later analyses in this research 

use a cutoff wind speed of 2 m/s.  The accuracy and precision of MCP predictions 

is slightly better for this value compared to 1 m/s or 3 m/s, although the difference 

is small. 

• Seasonal MCP Parameters.  Because the wind resource has pronounced seasonal 

variations, calculating MCP parameters for each season (or each month) may 

offer a means of incorporating these seasonal variations into the MCP algorithm.  

While this approach holds promise, it is not utilized in this research. 

6.0 Wind Shear Modeling and Extrapolation 

In the boundary layer of the earth, the wind speed tends to increase with height.  This 

phenomenon is referred to as wind shear, and shear extrapolation is the process of 

estimating the wind speed at a higher height using measured data at a lower height.  Wind 

shear extrapolation is an extremely important component of wind energy site assessment. 

6.1 Wind Shear in Site Assessment   

There are many approaches to dealing with wind shear in the site assessment process.  

Commonly, measured wind speed data from the met tower is used to calculate a shear 

parameter, and then a shear model is applied in order to estimate the wind resource at the 

turbine hub height.  Another approach utilizes numerical flow models and the local 

topography and roughness to estimate the wind resource at higher heights.  Regardless of 

the approach, these processes can introduce a great deal of uncertainty into the hub height 
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estimate, and consequently wind shear modeling and extrapolation is a critical step in the 

site assessment process. 

Because wind speeds typically increase with height, there is a strong incentive to 

increase turbine hub heights in order to capture more energy from the wind.  Wind 

turbine hub heights are increasing steadily, with heights as high as 100 m or higher built 

or planned [12].  The increased energy production often outweighs the increased tower 

cost, making taller wind turbines economically advantageous [54].   

As the turbine hub heights increase, but met tower heights remain relatively constant, 

shear extrapolation becomes an extremely important component of the site assessment 

process.  Accurate methods for shear extrapolation are needed to minimize the errors in 

the prediction of the hub height wind resource.  However, as wind turbine hub heights 

and met tower measurement heights become separated by larger and larger distances, 

shear extrapolation becomes more uncertain [17]. 

6.2 Wind Shear Modeling 

There are many approaches to shear extrapolation.  In one method, standard values 

for the shear parameters (either the surface roughness length or the power law exponent) 

for a given type of terrain can be used.  These “rules of thumb” values are based on 

experience and empirical data.  The “1/7th” power law rule, for example, is often used in 

flat terrain.  Elkinton et al., however, show that these rules of thumb values are often 

inadequate in predicting the wind resource at hub height, leading to large errors [16].   

In a second approach, the shear parameter can be estimated if there are measured data 

from the met tower at two heights.  In this case, the measured data are used to calculate 

the shear parameter at the site, which is then used to estimate the hub height wind 
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resource.  Once again, this method can result in significant errors in the estimation of the 

hub height wind resource [16].   

Lastly, numerical flow models can be used to estimate the wind resource at higher 

heights [8].  These models account for the local topography and roughness, and along 

with the measured data at one or several locations, estimate the wind resource at other 

locations and higher heights.   

The power law and the log law are the two most commonly used models for 

approximating the wind shear at a site.  The power law is shown in Eq. 6 and the log law 

is shown in Eq. 7 [21].  The relevant wind shear coefficient, either α or z0, can be 

calculated when the wind speed is measured at two heights.   
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• U(z) is the wind speed at height z. 

• U(zr) is the reference wind speed at the reference height zr. 

• α is the power law exponent.  
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• U(z) is the wind speed at height z. 

• U(zr) is the reference wind speed at the reference height zr. 

• z0 is the surface roughness length. 

 

Elkinton et al. show that the power law and log law models perform equivalently in 

shear extrapolation predictions [16].  There are also more complex wind shear models 

that can be used.  Some of these models incorporate the vertical temperature gradient at 
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the site to determine the atmospheric stability, yielding a more accurate shear model.  

Numerical models that incorporate the surrounding topography and surface roughness 

can also be used.  These complex models are outside the scope of this research.  In this 

research, the power law is primarily utilized.   
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CHAPTER III  

SITE ASSESSMENT AND UNCERTAINTY 

1.0 Introduction 

The traditional wind energy site assessment process is described in detail in Chapter I, 

Section 1.1.  While this description focuses primarily on the process of estimating the 

long-term wind resource and the energy production from a wind farm, another critical but 

sometimes overlooked component of this process is determining the uncertainty of these 

estimates.  This Chapter focuses on uncertainty in the site assessment process. 

Wind resource assessment is an uncertain process, and a large number of factors 

ranging from wind speed measurement errors to the inherent physical variations in the 

wind contribute to this uncertainty.  Overall, these various individual sources of error 

must all be accounted for in order to provide an estimate of the total uncertainty of the 

estimated wind resource.  Furthermore, power curves and energy loss terms are uncertain 

as well.  When the wind resource, the power curve, and the energy losses are combined to 

estimate the annual energy production (AEP), the uncertainties from all the factors 

contribute to an overall AEP uncertainty.  This uncertainty is critical in estimating the 

risk associated with the potential venture, and the ability to secure a loan for a wind 

energy development is closely tied to the perceived risk [14]. 

This Chapter considers the site assessment process in which meteorological towers 

(met towers) equipped with cup anemometry and vanes are the primary method for 

evaluating the wind resource, which is the most common method in the United States 

[55].  Alternative methods for site assessment are not considered in this Chapter.  On the 
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other hand, many of the techniques developed in the Chapter can be modified and utilized 

to estimate the uncertainty when using alternative monitoring approaches, like those 

discussed in Chapters V-VI.   

This Chapter has three goals.  First, it seeks to identify a comprehensive set of the 

potential sources of error and the associated uncertainties inherent in wind resource 

assessment and energy production estimation.  When possible, the uncertainties are 

quantified, or ranges of values are given.  Second, it presents a method for estimating the 

long-term wind resource and then the AEP at a site, using the measured wind resource, 

the wind turbine(s) power curve(s), and the expected energy losses.   Finally, methods for 

combining the individual uncertainty estimates into a final estimate of the overall 

uncertainty of the AEP are presented.  This uncertainty depends on the respective 

uncertainties of the wind resource, the wind turbine power curve, and the expected 

energy losses, and combining all of the uncertainty sources is a complex process. 

This Chapter utilizes the Weibull distribution as an approximation of the wind speed 

probability distribution, which is also described in Chapter II, Section 4.0.  A statistical 

model is extremely useful for handling uncertainty both in wind resource assessment and 

in AEP estimation.  Many of the statistical techniques presented in this Chapter rely on 

the ability to express the wind speed distribution in a functional form.  By using a 

Weibull distribution to represent the wind speed distribution, the uncertainty in the wind 

resource can be expressed as uncertainty in the values of c and k.  On the other hand, it is 

often easier to conceptualize and estimate uncertainty in the mean wind speed rather than 

in c.  Thus, the uncertainty in the mean wind speed and k are determined first, and then 

the uncertainty in c is calculated from these values. 
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1.1 Chapter Overview 

As stated above, the AEP estimate depends on the wind resource, the wind turbines’ 

power curve, and the expected energy losses.  These three factors and their respective 

uncertainty must be determined in order to estimate both the AEP and the uncertainty of 

the AEP.   

This Chapter is organized as follows: 

• Section 2 reviews error types and uncertainty analysis. 

• Section 3 presents the process of estimating the long-term wind resource and the 

factors that contribute to uncertainty in evaluating the wind resource.  For each of 

these factors, the contribution to the uncertainty in both the mean wind speed and 

k is estimated. 

• Section 4 discusses the factors that contribute to uncertainty in the power curve 

and power production of a wind turbine. 

• Section 5 describes the energy loss factors and their uncertainty. 

• Section 6 provides a means of combining the wind resource, the power curve, and 

the energy loss factors into a final estimation of the AEP of a wind turbine or 

wind farm, and combining their respective uncertainties into an estimate of the 

overall AEP uncertainty. 

2.0 Review of Error Sources and Measurement Uncertainty Analysis 

Before discussing the details of wind resource uncertainty, it is important to review 

the basics of error types and uncertainty analysis.  The error analysis concepts presented 

in this Section are used throughout the rest of the Chapter.  All measurements, no matter 
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how carefully done, are subject to errors, which results in a measured value differing 

from the true value.  The amount by which they differ (the size of the error) is unknown, 

and so all measurements are subject to some uncertainty.  In this Chapter, the term 

“uncertainty” is used as a general measure of the size of the error.  The error in a 

measurement is comprised of two components: the random error and the systematic error 

[56].  Each of these components is now discussed. 

2.1 Random Error Uncertainty 

Random error is produced by variability in the quantity being measured or the 

measurement procedure.  For example, when measuring the duration of an event using a 

stopwatch, random error may arise when multiple measurements are made.  The reaction 

time of the stopwatch operator may vary, causing each measurement to differ.  The 

standard deviation of the measurements is a measure of the uncertainty of a single 

measurement due to random error.  These errors are often assumed to have normal 

distributions about the true value.  If the measurements have a normal distribution, then 

approximately 68% of the measurements are within one standard deviation of the mean, 

and approximately 95% are within two standard deviations of the mean.   

Often, the mean of the measurements is the quantity of interest.  The uncertainty of 

the mean of the measurements is not equal to the standard deviation of the measurements.  

Rather, using the central limit theorem, the uncertainty of the mean of the measurements, 

δx,¯ , is equal to the standard deviation of the measurements, σx, divided by the square 

root of the number of measurements, N, assuming the measurements are independent.  

This relation is shown in Eq. 8.  
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Nx x /σδ =   Eq. 8

The uncertainty in the estimate of the mean decreases as the number of measurements 

increases.  Furthermore, this uncertainty is normally distributed for a large N, even if the 

distribution of the measurements is not normal.  Sources of random error are categorized 

as Type A uncertainty.  In summary: 

• Random error is due to variability in measurements, and can be identified from 

the measured data. 

• The uncertainty is characterized by the standard deviation of the measurements.  

The uncertainty in the mean of the measurements decreases with the number of 

measurements made.  This uncertainty is labeled Type A.  

2.2 Bias and Unknown Bias Uncertainty 

Systematic errors, or biases, are constant over a set of identical measurements.  These 

errors are often due to an error in a calibration constant.  An example of a systematic 

error is a stopwatch that runs slowly.  Any measure of the duration of an event with that 

stopwatch results in a value that is smaller than the true value.  Systematic errors cannot 

be revealed by repeated measurements because they are constant over the set of 

measurements (assuming the same instruments are used, e.g., the same stopwatch).   

Whenever a measurement is performed, effort should be made to identify the 

systematic errors, and to either remove the source of the errors or to adjust the 

measurements by the value of the bias.  For example, if one knew that the stopwatch ran 

slowly by a certain amount, all measurements could be scaled to correct for this known 

bias.  This scaled value is then the estimate of the true value of the measurement.  Once 

the bias is accounted for by scaling the measurements, the uncertainty is expressed as a 
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value around the scaled value.  An estimate of the bias of an instrument often requires 

comparison to an unbiased (generally more precise) instrument or comparison to 

measurements from multiple instruments.  In this Chapter, for every source of error, the 

probable bias is estimated.  A positive bias is used when a quantity is known to be 

overestimated and a negative bias when the quantity is known to be underestimated.   

The issue is complicated when the bias in a measurement is unknown.  Again using 

the stopwatch example, if one does not know how slowly or quickly a stopwatch is 

running, this produces additional uncertainty in the measurement.  However, the bias, 

while unknown, is constant across every measurement, and so it does not behave like 

random error, which varies with each measurement and so can be calculated from the 

measured data.  The uncertainty due to unknown systematic errors is typically estimated 

based on experience [57].  Furthermore, uncertainty due to unknown bias does not 

necessarily have to be characterized by a normal distribution, and therefore measured by 

the standard deviation.   

The issue is resolved as follows.  While any particular instrument can be subject to an 

unknown bias, the bias of a collection of all of those instruments is assumed to be 

normally distributed with a mean value of zero.  For example, the mean bias of all the 

stopwatches from a certain model is assumed to be zero, and variability in the bias of the 

instruments is assumed to be normally distributed about zero.  When one randomly 

selects a stopwatch from the set of all stopwatches, the uncertainty due to an unknown 

bias is equal to the standard deviation of the biases of the set of stopwatches.  Thus, there 

is a random component to the unknown bias, even if it is constant for a single instrument.  

Therefore, the unknown bias uncertainty is characterized by a normal distribution, and so 
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the standard deviation is the measurement of the uncertainty.  The standard deviation of 

the unknown bias can be measured if multiple instruments are used simultaneously.  

However, when only a single instrument is used, then the uncertainty has to be 

approximated.  This uncertainty is approximated often in this Chapter, as it is generally 

not feasible to have multiple instruments taking simultaneous measurements.  The 

uncertainty due to unknown bias is categorized as Type B uncertainty (in statistical 

literature, the Type A and Type B uncertainties would be called components of variance). 

In summary: 

• In any measurement, effort should be made to identify and eliminate systematic 

errors. 

• Systematic errors cannot be identified from the data. 

• Unknown bias is inevitable, and no comprehensive theory exists for dealing with 

uncertainty due to unknown bias. 

• This Chapter characterizes all uncertainty due to unknown bias using a normal 

distribution.  This uncertainty is labeled Type B. 

2.3 Combination of Uncertainties 

This Chapter assumes that all Type A and Type B uncertainties are independent and 

normally distributed.  These are similar assumptions to those recommended in the IEC 

61400-12 standards and by Frandsen et al. [13],[57],[58].  Unless otherwise stated, 

uncertainties are characterized by the fractional standard uncertainty.  The fractional 

standard uncertainty is a percentage uncertainty, and is calculated as the uncertainty of 

the measurement of a parameter divided by the absolute value of the expected value of 

the parameter.  In contrast, the absolute standard uncertainty of a quantity is simply the 
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uncertainty of the measurement of the parameter and so it has units.  Throughout this 

Chapter, a superscript * is used to denote absolute uncertainties.  Fractional uncertainties 

do not have a * superscript.   

In some cases, specific sources of Type B uncertainty are more easily characterized 

by an uncertainty limit.  That is, the estimated distribution is rectangular, with a 

probability of one that the measurement occurs in some range, +/- R.  In these cases, the 

standard uncertainty, δx, is equal to R divided by the square root of three, shown in Eq. 9 

[13].   

3/Rx =δ   Eq. 9

An example is shown in Figure 10.  In this example, a rectangular distribution, with a 

mean value of one and a range of two, is plotted.  R is therefore equal to one, and so the 

standard uncertainty is equal to one divided by the square root of three, which is 0.577.  

A normal distribution with this standard deviation and a mean of one is also plotted in 

Figure 10. 
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Figure 10 – Example of Rectangular and Normal Distribution 

Once all of the uncertainty sources are identified and estimated, they can be combined 

to determine a total uncertainty.  When multiple uncertain quantities are used to calculate 

some parameter, the uncertainties in the component quantities combine to yield a total 

uncertainty in the parameter.  For a parameter f, that is a function of several variables, 

f=f(x1,…, xn), the uncertainties of the variables, δx1
*,…, δxn

*, are combined to yield an 

overall uncertainty, δf*.  δf* is calculated using Eq. 10, as long as the uncertainties are 

independent [56].  All uncertainties in Eq. 10 are absolute uncertainties, and so they can 

have units. 
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Eq. 10 can be non-dimensionalized so that the uncertainties are expressed as 

fractional uncertainties.  The non-dimensional form of Eq. 10 is shown in Eq. 11.  In Eq. 

11, δf and δx1,…, δxn are now fractional uncertainties.  The partial derivatives and the 

fractions, which multiply the fractional uncertainties, are referred to as “sensitivity 

factors,” since they measure how sensitive changes in f are to changes in the variables. 

For example, if f has a linear dependence on a variable, then the sensitivity factor is one 

for that variable.  For a quadratic dependence, the sensitivity factor is two.  The 

sensitivity factors may be positive or negative in order to indicate if a change in the 

individual variable causes an increase or a decrease in f.  The sign is not particularly 

important though, since the terms are then squared.  The sensitivity factors are also non-

dimensional.  If all of the sensitivity factors are equal to one, then Eq. 11 reduces to a 

simple root-sum-square technique (RSS).    
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In this Chapter, Type A and Type B uncertainties can be combined together using Eq. 

11 as long as they are each expressed using the standard deviation as a measure of 

uncertainty.  It must be emphasized that there is no definitive method for combining Type 

A errors and Type B errors. Both Taylor and Frandsen suggest this method as the best 

available option, assuming that the individual uncertainty sources are independent 

[56],[57].  Also, because the total uncertainty is the sum of multiple independent 

individual sources of uncertainty, by the central limit theorem, the distribution of the total 

uncertainty tends toward a normal distribution, regardless of the distribution of the 
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individual sources of uncertainty.  In this Chapter, all sources of uncertainty are assumed 

to be normally distributed, so the distribution of the total uncertainty is also normal.  

3.0 The Wind Resource and Uncertainty 

Wind resource assessment is the first major step in the wind energy site assessment 

process.  It consists of using measured wind speed data to estimate the long-term hub 

height wind resource at each turbine location.  This process is briefly described in 

Chapter I, Section 1.0.  The “Wind Resource Assessment Handbook” provides a detailed 

description of many aspects of the site assessment process, especially a method for 

measuring the wind resource at a site [1].  Because the wind resource varies from year to 

year, an estimate of the long-term value is critical to accurately estimate energy 

production [6],[7].  Also, wind turbine power output depends on the wind speed at the 

turbine hub height and location.  The result is that an estimate of the hub height wind 

resource is necessary for accurate estimations of AEP.  Furthermore, when multiple wind 

turbines are installed at a site or when the met tower and the turbine are in different 

locations, the wind resource must be estimated at the location of each turbine [7],[8].   

When the Weibull distribution is used to characterize the wind resource, the goal of 

wind resource assessment is to estimate the long-term hub height values of the Weibull 

parameters, cLT_HUB and kLT_HUB at each turbine location.  The values of these parameters 

can then be used in the estimate of AEP.   

In general, wind resource evaluation is a time consuming process, subject to a great 

deal of uncertainty.  This Section describes the four categories of uncertainty sources that 

arise in evaluating the wind resource.  There are a total of fourteen individual component 

uncertainty sources identified in this Chapter that contribute to the wind resource 
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uncertainty, encompassed by the four categories of uncertainty.  For each of the fourteen 

potential sources of error discussed in this Section, the contribution to the uncertainty in 

both the mean wind speed (and therefore c) and k is given, as well as the value for any 

known bias.  After the discussion of each uncertainty, a table is given to summarize the 

results.  Next, a method is presented for estimating cLT_HUB and kLT_HUB from measured 

wind speed data.  This process for estimating the wind resource informs the process for 

estimating the wind resource uncertainty.  Finally, a method for estimating the wind 

resource uncertainty is presented.  The method uses the error analysis techniques outlined 

in Section 2.0.  Specifically, sensitivity factors are calculated for the various categories of 

uncertainty.  Because the Weibull distribution is used to characterize the wind resource, 

the wind resource uncertainty can be expressed as uncertainty in the values of c and k.   

The causes of uncertainty that arise in wind resource assessment can be subdivided 

into four categories.  These four categories are labeled with subscripts “M”, “LT”, “V”, 

and “SA”.   

I. Wind Speed Measurement Uncertainty (M). 

II. Long-term Resource Estimation Uncertainty (LT). 

III. Wind Resource Variability Uncertainty (V). 

IV. Site Assessment Uncertainty (SA). 

3.1 Wind Speed Measurement Uncertainty 

Uncertainty arises when measuring the actual wind speed at a site.  The wind speed at 

a site is usually measured by taking 10-minute averages (sometimes 1-hour averages) of 

the wind speed, sampled at approximately 1 Hz.  Wind data at a site are then presented as 

a time series of these 10-minute averages [1].  The 10-minute averaged wind speeds are 
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labeled UM in this Chapter.  The measured mean wind speed at a site is the mean of all 

the values of the measured wind speed.  Likewise, the measured wind speed can be used 

to estimate the Weibull parameters.  The measured mean wind speed and Weibull 

parameters are labeled U,¯ M, cM, and kM, respectively. 

Several factors can contribute to errors in the measurement of the wind speed, and 

therefore in determination of U,¯ M, cM, and kM.  They are labeled δU1, δU2, δU3, δU4, 

δU5, δU6, δU7 and δk1, δk2, δk3, δk4, δk5, δk6, δk7.  They are: 

1. Anemometer Uncertainty I (Calibration Uncertainty). 

2. Anemometer Uncertainty II (Dynamic Overspeeding). 

3. Anemometer Uncertainty III (Vertical Flow Effects). 

4. Anemometer Uncertainty IV (Vertical Turbulence Effects). 

5. Tower Effects. 

6. Boom Effects. 

7. Data Reduction Accuracy. 

 

1. Anemometer Uncertainty I (Calibration Uncertainty) – While anemometers are 

the preferred means of measuring wind speed, they also have the potential for 

measurement error.  The uncertainty due to this measurement error arises from variations 

between anemometers of a given model, and is referred to as a “calibration uncertainty.”  

While a general transfer function may exist for a particular model of anemometer, this 

transfer function may not exactly represent a specific anemometer, and therefore 

unknown bias may be present.  Alternatively, if a specific anemometer is calibrated in a 

wind tunnel, measurement errors in the calibration process can again lead to an inaccurate 
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transfer function, and so unknown bias is once again present.  Thus, this is a Type B 

uncertainty, since it is due to an unknown bias.     

One of the most common anemometers used in the wind industry in the U.S. is the 

NRG Maximum 40 anemometer.  This is also the anemometer used by the Renewable 

Energy Research Laboratory (RERL).  Lockhart and Bailey investigate the accuracy of 

the Maximum 40 anemometer.  They conclude that: “The #40 is accurate to within 0.1 

m/s for the wind speed range 5 m/s to 25 m/s” [24].  This uncertainty therefore ranges 

between 0.4% and 2% depending on the wind speed.  Likewise, the Risø P2546 model 

anemometer has an approximate uncertainty of 0.1 m/s [26].  Finally, the Thies First 

Class 4.3350.10.000 has an uncertainty of approximately 1% [25].   Overall, a reasonable 

estimate of the uncertainty of U,¯ M due to anemometer calibration uncertainty is 1.5%, 

because this is an approximate average of the conservative values for the three 

anemometer models.  This recommended value clearly depends on the type of 

anemometer used, and the wind resource at a site.   

Uncertainties in the anemometer readings can also lead to uncertainties in kM.  In this 

particular case, an uncertainty of 0% for kM is used since small uncertainties in an 

individual measurement of the wind speed should have a negligible effect on the shape of 

the wind speed distribution. 

δU1 δk1 Bias U1 Bias k1 
1.5% 0% 0% 0% 

 

2. Anemometer Uncertainty II (Longitudinal Dynamic Overspeeding) - 

Overspeeding is a well-known source of error in cup anemometers, as their inherent 

physical design causes them to speed up more rapidly than they slow down, thereby 
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causing an overestimation of the wind speed.  This overestimation does not come into 

play in laminar flow with very slow changes in the wind speed.  Rather, overspeeding is 

caused by turbulent wind, where the wind speed changes rapidly.  Thus, overspeeding is 

inextricably linked to turbulence in the wind.  Perhaps unsurprisingly, overspeeding is 

therefore a function of the turbulence intensity (as well as other factors).  The turbulence 

intensity is equal to the standard deviation of the wind speed measurements over a certain 

period, divided by the mean wind speed over that period, as shown in Eq. 12.   

UTI /σ=   Eq. 12

Turbulence intensity is a non-dimensional term that quantifies the degree of 

turbulence in the wind during a certain time period.  Turbulence intensity can also be 

broken down into Cartesian components, so one can measure the longitudinal, lateral, and 

vertical turbulence intensity (the longitudinal direction is horizontal and in the direction 

of the mean wind speed whereas the lateral direction is perpendicular to the vertical and 

longitudinal directions), which are equal to the standard deviation of the wind speed 

component in the respective directions, divided by the overall mean wind speed.  

Overspeeding is traditionally defined as the effect due to the longitudinal turbulence – 

that is, turbulence in the direction of the mean wind speed. 

It must be noted that the effects of turbulence on the measurements of cup 

anemometers is an extremely complicated phenomena, and it is still not fully understood 

[35],[36].  The discussion of overspeeding and turbulence effects presented here is by no 

means exhaustive.  Instead, it is meant to provide some basic background information, to 

make the reader aware of the issue of turbulence effects, and to provide some guidance 

on approximating uncertainty and bias due to these effects.  For more detailed 
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information on the physics and effects of turbulence on the measurements of cup 

anemometers, the reader is referred to the work of Kristensen [59],[60], and 

Papadopoulos et al. [61].  

In the extensive work of Kristensen on this issue, he identifies four sources of error 

due to turbulence in the wind [60].  However, for the purposes of site assessment using 

cup anemometry, only two error sources are relevant [61].  These are longitudinal 

overspeeding and vertical turbulence effects, also called the u-bias (δu) and the w-bias 

(δw).  Longitudinal overspeeding is what is commonly thought of as overspeeding.  That 

is, overspeeding is generally considered to consist of just the effect of fluctuations in the 

direction of mean wind speed.  However, the vertical component of turbulence can also 

cause error in the anemometer readings as well, sometimes much larger than the effect of 

overspeeding.  Longitudinal overspeeding is discussed now, and the effects of vertical 

turbulence are discussed in a later source of uncertainty (Anemometer Uncertainty IV).   

Kristensen shows that the error due to longitudinal overspeeding, δu, is proportional 

to the square of the longitudinal turbulence intensity [60].  Therefore, at sites with higher 

longitudinal turbulence intensity, the error due to overspeeding is larger.  The 

longitudinal overspeeding is also proportional to the distance constant of the anemometer.  

The distance constant is a property of a cup anemometer that determines how rapidly it 

responds to changes in the wind speed.  Cup anemometers with small distance constants 

respond to wind speed changes more rapidly than those with large distance constants, and 

so the smaller the distance constant, the lower the error due to longitudinal overspeeding.  

Typically, modern cup anemometers have distance constants less than 5 m to ensure that 

they have an acceptably rapid response to wind speed changes.  Finally, longitudinal 
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overspeeding always produces a positive bias, so that the measured wind speed is larger 

than the true wind speed. 

In general, overspeeding for modern cup anemometers with small distance constants 

is a fairly small effect.  Several sources indicate that it is on the order of a few tenths of a 

percent, and almost certainly less than 1% [60],[61],[62].  This value depends on the 

turbulence at the site as well as the distance constant of the anemometer.  Because the 

likely range for the overspeeding bias is between 0% and 1%, a 0.5% bias can be 

assumed.  The standard uncertainty can be estimated using Eq. 9 since the overspeeding 

uncertainty is estimated as a maximum range.  Since the range is 0.5%, the standard 

uncertainty is 0.3%.  Overspeeding is unlikely to affect the shape of the wind speed 

distribution, so δk2 can be assumed to be 0%. 

δU2 δk2 Bias U2 Bias k2 
0.3% 0% 0.5% 0% 

 

3. Anemometer Uncertainty III (Vertical Flow Effects) - When the power curve of a 

wind turbine is calculated, the IEC standards require that the measured wind speed is the 

horizontal component (lateral and longitudinal, but not vertical) of the wind velocity 

vector.  The standards state that: “The wind speed to be measured is defined as the 

average magnitude of the horizontal component of the instantaneous wind velocity 

vector, including only the longitudinal and lateral, but not the vertical, turbulence 

components” [13].  Therefore, when the wind speed is measured during site assessment, 

the goal should likewise be to measure the horizontal component of the wind speed.  In 

this way, the measured wind speed and the wind speed measured during power curve 
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calibration are defined consistently, and so a power curve of a particular turbine 

accurately predicts the power output for a given measured wind resource. 

In practice, the vertical component of the wind speed vector can affect the 

measurement of an anemometer.  Different anemometers have different angular response 

characteristics, so they respond differently to flow that is not purely horizontal.  At some 

sites, the terrain causes a consistent flow inclination that can affect the measured wind 

speed of an anemometer.   

Currently, only three models of anemometer are approved by the IEC and MEASNET 

for power curve calculation – the Risø P2546A, Thies First Class 4.3350.10.000, and a 

Vector A100 model anemometer.  In fact, the Thies anemometer has undergone a recent 

redesign specifically to address this point and make it less sensitive to vertical flow [25].  

These three anemometers are approved in part because they are fairly insensitive to 

vertical flow, and so the wind speed measurement approximates the horizontal wind 

speed (i.e., they have 2D characteristics).  Angular response graphs are often given for 

specific anemometers to indicate their sensitivity to vertical flow.  Angular response 

curves plot the ratio of the measured wind speed to the full 3D wind speed as a function 

of tilt angle.  An ideal 2D anemometer that only measures the horizontal wind speed has 

an angular response graph in which the measured wind speed decreases as the cosine of 

the flow inclination angle.  That is, for a given flow inclination angle, α, the measured 

wind speed is equal to the actual 3D wind speed multiplied by the cosine of α.  An 

example angular response curve is given in Figure 11, which shows the angular response 

characteristics of the Risø anemometer [26].  This ideal cosine response is also shown in 

Figure 11.  Angular response curves are often available from the anemometer 
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manufacturer.  Extensive testing is done to determine the angular response curves of 

anemometers [22],[35]. 

 
Figure 11 – Angular Response Graph of Risø Anemometer  

In reality, no anemometer perfectly measures the horizontal wind speed.  Figure 11 

indicates that the Risø anemometer angular response curve is actually very closely 

approximated by a cosine-squared curve, and not a cosine curve.  However, for 

reasonable tilt angles between –10 degrees and 10 degrees, the Risø anemometer 

provides a good approximation of the horizontal wind speed.  Overall, while no 

anemometer has a perfect cosine angular response curve, the three IEC-approved 

anemometers provide good approximations of the horizontal wind speed, especially for 

small tilt angles. 

Preferably, one of these three IEC approved anemometers should be used during site 

assessment.  In this case, the measured wind speed at the site is consistent with the 

measured wind speed during power curve calculation.  Regardless of what type of 
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anemometer is used, the flow inclination at the site should be considered.  When the site 

is fairly flat, there is unlikely to be a consistent flow inclination greater than a few 

degrees.  At flat sites, the minor flow inclination is likely difficult to measure as well.  In 

this case, the error between the measured wind speed and the horizontal wind speed is 

small.  Based on the angular response curves of a few commonly used anemometers, for 

flat sites with mean flow inclinations less than approximately 3-5 degrees, the error due 

to inclined flow is probably less than 1%.  Thus, no matter what type of anemometer is 

used, a 0.5% uncertainty (using Eq. 9) due to the potential for minor inclined flow should 

be assumed.  When the flow inclination is significant at a site (e.g., at a very hilly 

location), then the measured wind speed needs to be corrected using the angular response 

curve of the anemometer.  This correction process is outside of the scope of this Chapter.  

However, Papadopoulos et al. provide one such method [61].  Their paper should be 

consulted whenever a site assessment is taking place at a location with a significant flow 

inclination.   

For completeness, it is worth noting that wind turbines also have angular response 

characteristics.  Pedersen explores the angular response and turbulence sensitivity of 

wind turbines [35].  He notes that wind turbine power decreases proportionally to the 

cosine-squared of the tilt angle.  That is, the power output of a wind turbine does not 

obey the ideal cosine dependence, but instead it is proportional to the cosine-squared of 

the tilt angle.  As stated previously, the three IEC approved anemometers have angular 

response characteristics that more closely obey a cosine-squared relationship, for tilt 

angles of +/- 20 degrees.  The wind speed measured by the anemometers decreases 

approximately as the cosine-squared of the tilt angle, just as the power scales for wind 
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turbines.  However, at small tilt angles, the difference between the actual angular 

response and the ideal response is negligible. For a tilt angle of 5 degrees, the difference 

is 0.4%, and for 10 degrees it is 1.5%.  Thus, while the three IEC approved anemometers 

do not have exactly ideal angular response characteristics, they are extremely close for 

modest tilt angles.  Furthermore, their angular response characteristics are similar to the 

angular response characteristics of wind turbines, and so even at large tilt angles, the 

power production is affected the same amount as the wind speed measurement. 

To summarize: 

• In flat terrain, a 0.5% uncertainty should be assumed for all anemometers due to 

the potential for small values of flow inclination.   

• When large flow inclination exists at a site, a method proposed by Papadopoulos 

can be used to correct the measured wind speed values using the angular response 

curves.   

• The shape of the wind speed distribution is unlikely to be affected by this issue, 

and so a 0% uncertainty for kM can be assumed due to this uncertainty in wind 

speed measurements. 

In Flat Terrain 
δU3 δk3 Bias U3 Bias k3 

0.5% 0% 0% 0% 
 

4. Anemometer Uncertainty IV (Vertical Turbulence Effects) – Even at sites with no 

flow inclination, turbulence in the vertical direction can cause an overestimation of the 

mean wind speed.  This effect is similar to overspeeding in that it is due to turbulence, 

and it is referred to as the w-bias.  Like overspeeding, vertical turbulence effects depend 

on the physical characteristics of the cup anemometer.  In the case of overspeeding, this 
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characteristic is the distance constant; in the case of vertical turbulence effects, the 

angular response curve is the relevant parameter.  These effects are explored in detail by 

Kristensen and Papadopoulos et al. [60],[61].  However, the vertical turbulence effects 

can produce either positive or negative biases, which is not the case for overspeeding.   

At flat sites, the turbulent nature of the wind causes turbulence in the vertical 

direction.  This turbulence can be quantified by the vertical turbulence intensity.  Vertical 

turbulence at a site can cause errors in the wind speed measured by a cup anemometer.  

The error is the difference between the measured wind speed and the actual horizontal 

wind speed, which is what one is trying to measure.  This is the w-bias identified by 

Kristensen [60].  This error due to vertical turbulence is proportional to the square of the 

vertical turbulence intensity (similar to overspeeding errors).  Furthermore, the magnitude 

of the error depends on the angular response curve of the anemometer.  Not surprisingly, 

anemometers like the IEC-approved anemometers, with 2D angular response 

characteristics, have smaller errors due to vertical turbulence than anemometers that do 

not closely approximate the horizontal wind speed [61].   

The effect of vertical turbulence is identified experimentally by Albers et al. 

[63],[64],[65].  They note that two anemometers of different designs, identically 

calibrated in a wind turbine with only horizontal flow, can easily read 2% different even 

in flat terrain.  The source of this discrepancy is traced to sensitivity to vertical turbulence 

intensity.  When the vertical turbulence intensity is high, certain anemometers measure 

noticeably higher wind speeds than other anemometers.  In other words, different 

anemometers have different values of the w-bias, which causes them to provide different 

measured wind speeds when vertical turbulence is present.  This observation is confirmed 
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by the work of Curvers and van der Werff [66].  The authors point out that if a site is 

assessed with a fast reading anemometer (i.e. one that is highly susceptible to the w-bias), 

then the annual energy production is significantly overestimated, leading to unfounded 

optimism in a potential site.  This point is emphasized by Kline and Young [67].   

Overall, anemometers have widely varying angular response characteristics.  

Theoretically, according to the work of Kristensen, those with 2D characteristics have 

smaller errors due to vertical turbulence than those with 3D characteristics.  Albers et al. 

identify these discrepancies experimentally, and the work of Papadopoulos et al. confirms 

that they are in fact due to the w-bias.  Thus, the magnitude of the w-bias depends on the 

type of anemometer that is being used.  While no general rule can be stated for all site 

assessments using a cup anemometer, a few recommendations can be made: 

• For the IEC-approved anemometers, with 2D angular response characteristics, the 

work of Albers et al. and Papadopoulos et al. indicates that these anemometers 

generally provide a close approximation to the horizontal wind speed [61],[64].  

Therefore the w-bias is very low, and can be assumed to be 0%.  However, there 

is some variation in the w-bias around 0%, so a 1% uncertainty in the mean wind 

speed should be used.  This value is chosen to approximate the variation in the 

experimentally obtained results from Albers et al. and Papadopoulos et al. 

• The NRG Maximum 40 anemometer has 3D angular response characteristics [35].  

An ideal 3D anemometer would have a perfectly flat angular response curve, 

indicating that for any tilt angle the measured wind speed equals the true 3D wind 

speed.  The angular response curve for the NRG Maximum 40, shown in Figure 

12, is not a flat line like an ideal 3D anemometer, but on average it measures the 
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full 3D scalar wind speed for tilt angles between -20 degrees and 20 degrees.  In 

fact, the angular response characteristics are similar to the older Thies models. 

 
Figure 12 - Angular Response Graph of NRG Maximum 40 Anemometer 

• In flat terrain, Albers et al. find that the older Thies model, which has similar 

angular response characteristics to the Maximum 40 anemometer, overestimates 

the mean wind speed compared to the Risø model, which closely approximates 

the 2D horizontal wind speed, by approximately 2% (a 2% w-bias).  It is 

important to emphasize however, that this experiment is carried out in flat terrain, 

at high measuring heights (~80 m), and so there is almost no flow inclination and 

turbulence levels are low.  Thus, 2% overestimation of the mean wind speed is a 

minimum value, and so a slightly larger value should be used in general.  If one is 

assessing the wind resource in flat terrain using a Maximum 40 anemometer, or a 

similar 3D anemometer, then a 3% bias for U,¯ M should be assumed, and a 2% 

uncertainty.  This uncertainty is calculated using Eq. 9 (the uncertainty equals the 
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3% range divided by the square root of three).  It is worth noting that since the 

uncertainties estimated here are standard uncertainties, there is actually a finite 

probability that the value of a quantity is outside the range defined by the 

uncertainty.  In this way, using a 3% bias with a 2% uncertainty implies that there 

is a possibility that a 3D anemometer may correctly measure the true wind speed. 

• The shape of the wind speed distribution is unlikely to be affected by this issue, 

and so a 0% uncertainty for kM can be assumed due to this uncertainty in wind 

speed measurements. 

• At sites with more complex terrain, with higher values of the vertical turbulence 

intensity, Curvers and van der Werff found as much as a 7% difference in U,¯ M 

between different anemometers [66].  In this case, a larger uncertainty and bias is 

needed for anemometers with 3D angular response characteristics, unless some 

site calibration is done to quantify the overestimation.  Tentatively, a 4% bias for 

U,¯ M, with a 2% uncertainty can be assumed (again using Eq. 9), although this is 

a very rough estimate.  In this way, the mean wind speed is biased by 

approximately half of the maximum observed bias. 

 

To summarize:  

• Vertical turbulence causes 0% bias and 1% uncertainty in IEC approved 

anemometers with 2D angular response characteristics.   

• For non-IEC approved anemometers, such as the NRG Max 40, in flat terrain, 

vertical turbulence causes an approximately 3% bias and a 2% uncertainty in U,¯ 

M.   
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• For non-IEC approved anemometers in complex terrain, vertical turbulence 

causes an approximately 4% bias and a 2% uncertainty in U,¯ M.   

Using IEC approved anemometer 
δU4 δk4 Bias U4 Bias k4 
1% 0% 0% 0% 

 

Using NRG Maximum 40 Anemometer 
δU4 δk4 Bias U4 Bias k4 
2% 0% 3% or 4% 0% 

 

5. Tower Effects – The tower used in wind resource measurement can significantly 

affect the flow of air near the anemometers that measure the wind speed.  This effect is 

often referred to as “tower shadow,” and it is especially pronounced when the 

anemometer is in the wake of the tower.  The work of Kline is used to evaluate the 

uncertainty due to tower effects [68].  Several conclusions and recommendations can be 

drawn: 

• There is some controversy concerning the choice of top-mounted booms versus 

side-mounted booms.  Top-mounted anemometers are generally used in power 

performance testing.  When the anemometer is positioned far above the tower top, 

there are negligible tower effects, and therefore the anemometer is very closely 

measuring the undisturbed free-stream flow.  However, a top-mounted position 

has numerous potential drawbacks.  First, lightning rods are usually used to 

protect the equipment, and to be effective the lighting rod should be the highest 

point on the tower.  The presence of a lightning rod can therefore disturb the flow 

near the top-mounted anemometer.  Second, in order to measure wind shear at a 

location, multiple measurement heights are used.  So while a top-mounted 
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anemometer can be used for the highest height, side mounted anemometers at 

lower heights are needed as well.  Thus, using a top-mounted anemometer would 

result in inconsistent anemometer configurations, and therefore different tower 

effects at different heights.  Finally, if top-mounted anemometers are not 

positioned far above the tower, then they are subject to speed-up effects.  Kline 

finds that top-mounted booms on average caused a 2.7% overestimation of the 

mean wind speed, U,¯ M, with a 1% standard deviation for five different 

meteorological masts [68].  Again, this effect is highly dependent on the distance 

above the tower that the anemometer is mounted.  Overall, it is clear that top-

mounted anemometers should be used with care in resource assessment.   

• RERL chooses to use a configuration with two anemometers placed on side-

mounted booms at each height that is being measured [69].  The two anemometers 

are positioned 180 degrees from each other.  This redundancy helps to minimize 

the effect of tower shadow.  Also, if one anemometer fails, it is still possible to 

measure at that height.  The booms should be long enough to position the 

anemometers at a significant distance from the tower.  RERL generally uses 

booms that are at least 6 tower diameters long [69]. 

• RERL chooses to select the higher reading of the two anemometers at each height 

as the value of the measured wind speed, UM, for each averaging period (usually 

10 minute or hourly averages) during the data processing [70].  Kline 

recommends this procedure as well [68].  In this way, if one of the anemometers 

is in the tower shadow for much of the averaging period and therefore biased low, 

its reading is ignored, and instead the reading from the anemometer in the 
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unobstructed flow is used.  Essentially, this processing method is needed to 

combat the potential low biasing effects of tower shadow. 

• Basic potential flow fluid dynamic theory can be used to investigate this 

processing method.  The investigation seeks to determine if the processing 

method, by using the higher of the two readings, would bias the measured wind 

speed and cause an overestimate.  Potential flow can be used to model the 

resulting flow field when a cylinder is placed in a uniform free stream flow.  In 

front of the cylinder (i.e., at a position of 0 degrees from the free stream flow 

direction), the velocity of the flow decreases below that of the free stream.  

Meanwhile, the flow accelerates around the tower, reaching a maximum speed, 

greater than the free stream speed, at a position of 90 degrees from the free stream 

direction.  For a boom length of 6 tower diameters (which RERL uses, and is 

fairly standard), the potential flow theory indicates that the flow is decelerated by 

0.8% in front of the tower (0 degrees) and accelerated by 0.8% to the sides of the 

tower (90 degrees).  If the wind comes uniformly from one of these directions, 

then the wind speed is biased by +/- 0.8%.  Thus, 0.8% is a maximum possible 

deviation between the free stream wind speed and the measured wind speed for a 

boom length of 6 tower diameters.  Using Eq. 9, the standard uncertainty is 

therefore 0.5%.  This uncertainty is due to an unknown bias, so it is a Type B 

uncertainty.  In practice, the wind does come uniformly from one direction, and so 

the tower effects are less than this.  Overall, this investigation indicates that the 

processing method used by RERL, in which the higher of the two readings is 

used, does not introduce large errors into the measurement of the free stream wind 
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speed, and in fact provides a fairly accurate means of removing the effects of 

tower shadow.  The uncertainty in kM due to this processing technique can be 

assumed to be 0% because it does not affect the shape of the wind speed 

distribution. 

• If the RERL method for processing the data is used, then an uncertainty of 0% for 

kM should be used, since the effects of tower shadow do not change the shape of 

the wind speed distribution. 

• If one anemometer fails, or if only one anemometer is positioned at a given 

height, tower shadow becomes a pronounced effect, and readings are 

systematically biased low.  The estimate for this effect is a bias of 1.5% on the 

mean wind speed, U,¯ M, with an uncertainty of 1.0%, for tubular towers.  These 

values come from analyzing ten anemometers, mounted in pairs, which RERL has 

installed at five sites in Massachusetts.  Each of the pairs of anemometers is 

mounted 180 degrees away from each other, on side-mounted booms.  When the 

ratio of one anemometer to the maximum anemometer reading is plotted as a 

function of direction, a pronounced dip occurs when the anemometer is in the 

tower shadow.  The mean wind speed of each anemometer is then calculated, 

along with the mean wind speed of the maximum of the two anemometers.  The 

average decrease in mean wind speed of the anemometers compared to the 

maximum of the two readings is 1.5%, and the standard deviation of the decrease 

is 1.0%.  Thus, U,¯ M should be increased by 1.5% during times of anemometer 

failure, and this adjusted value should have a 1.0% uncertainty. 
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• This analysis finds a different effect on kM when only one anemometer is present.  

On average, kM is unchanged, but with a standard deviation of 1.0%.  Thus, when 

one anemometer is present, kM should have a 1.0% uncertainty. 

Two Side-Mounted Anemometers 
δU5 δk5 Bias U5 Bias k5 

0.5% 0% 0% 0% 
 

One Side-Mounted Anemometer 
δU5 δk5 Bias U5 Bias k5 

1.0% 1.0% -1.5% 0% 
 

6. Boom and Mounting Effects – The boom that supports the anemometer and 

connects it to the tower can also affect the reading of the anemometer.  Moreover, if an 

anemometer is not positioned exactly vertically, it measures a different wind speed than a 

vertical anemometer.  Pedersen and Hansen that look at the influence of the boom on 

anemometer measurements [71].  They conclude that the boom could have a significant 

effect on the anemometer measurement if they are not adequately separated vertically.  

However, if the anemometer is positioned 12-15 boom diameters from boom, there is a 

fairly small effect.  They measure a 1% overestimate of the mean wind speed for some 

wind directions, but no underestimate for any direction.  The RERL usually positions 

their anemometers 15-18 inches above the 1-inch boom pipe, and so only a slight 

overestimate from certain wind directions is likely.   

Mounting effects are also difficult to estimate.  Even with a level, it is almost 

impossible to perfectly position an anemometer.  A 5-degree misalignment is certainly 

possible.  For the IEC-approved 2D anemometers described above, a 5-degree 
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misalignment causes approximately a 1% maximum underestimate of the wind speed for 

some wind directions.   

Both the boom effects and the mounting effects are unavoidable.  On the other hand, 

the effects are only relevant for certain wind direction.  For a site with a normal wind 

rose, with wind blowing from all directions, these effects are likely to be small.  The 

maximum bias due to boom effects is approximately 1% and the maximum bias due to 

mounting effects is approximately -1%.  These biases tend to cancel each other out, 

producing a net 0% bias.  There is some uncertainty due to these affects as well.  The 

range of each effect is 0.5% (range is discussed in Section 2.0), and so there is a standard 

uncertainty of approximately 0.3% for each effect.  These uncertainty sources are 

independent, so they can be combined using RSS to give an overall uncertainty due to 

boom and mounting effects of 0.5%.   

These effects should not change the shape of the wind speed distribution, and so a 

value 0% can be used for δk6.   

For the RERL Boom Setup 
δU6 δk6 Bias U6 Bias k6 

0.5% 0% 0% 0% 
 

7. Data Reduction Accuracy – In general, raw wind data are processed prior to the 

calculation of U,¯ M, cM, and kM.  This data reduction involves removing data when icing 

has taken place on the sensors, or when the sensors have failed for other reasons [58].  

These gaps in the data could potentially cause errors in the estimation of U,¯ M.  To 

investigate this effect, seven data sets of at least a year are selected.  For each data set, a 

random time point in the data set is selected.  For each random time point, a certain 

amount of data from this point forward is removed from the data set.  The amount 
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removed is increased from 0% to 20% in increments of 0.5%.  Then the ratio of the mean 

wind speed with the segment removed to the mean wind speed of the full data set is 

calculated.  For each data set, this process is carried out ten times, so that for each 

percentage amount of data removed, there are ten random initial time points selected.  

Then, the average and the standard deviation of the results for the seven data sets are 

calculated.  Figure 13 shows the percentage standard deviation of the ratio of the mean to 

the true mean as a function of the amount of data removed. 

 
Figure 13 – Effect of Data Removal 

In effect, this is a measure of the uncertainty of the estimate of the mean wind speed 

as a function of the amount of missing data.  Clearly, the error in the calculation of the 

mean increases as the amount of data removed increases.  While there is a large amount 

of scatter in the plot, a linear fit is made in order to determine the approximate 

relationship between the length of data removed and the error produced in the calculation 

of U,¯ M.  The results indicate that the percentage error is approximately 0.03 times the 
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percentage of missing data.  Thus, if 5% of the data set is missing due to icing or failed 

sensors, then a data reduction accuracy of 0.15% can be assumed.  In general, this 

uncertainty is likely to be negligible, unless large amounts of data are missing.  This is 

also a Type B uncertainty.  For any given data set, it is unknown if the missing data 

would have caused a higher or lower value of U,¯ M.  Thus, the missing data introduces 

an unknown bias.  The same analysis is carried out for kM, and the results are very 

similar.  Thus, this relationship can be assumed for both U,¯ M and kM. 

 

3.2 Long-term Resource Estimation Uncertainty 

These uncertainty sources arise when the measured wind resource data are used to 

estimate the long-term wind resource at a site.  While wind resource measurement 

typically lasts for one year, the measured resource during this particular year may not be 

representative of the actual long-term resource at the site [3],[6],[7],[72].  The long-term 

resource is characterized by the mean wind speed and wind speed distribution that exists 

at a site over a very long period of time.  Typically, twenty years is assumed to be a long 

enough time period to characterize the long-term wind resource.  Since a twenty year 

measurement campaign is far too long for practical purposes, the long-term resource must 

be estimated from the measured data.  The measured data, along with long-term data 

from a nearby site (the “reference site”), are generally used in a process called Measure-

Correlate-Predict (MCP) to estimate the long-term wind resource at a site [7],[51].  The 

long-term mean wind speed and Weibull parameters are labeled U,¯ LT, cLT, and kLT, 

δU7 δk7 Bias U7 Bias k7 
0.03 * (% Missing) 0.03 * (% Missing) 0% 0% 
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respectively.  The estimation of the long-term Weibull parameters in the MCP step 

contributes an additional uncertainty.  Finally, global climate change, whether 

anthropogenic or naturally caused, can cause additional uncertainty [72]. 

Thus, additional uncertainty arises when the measured data are used to estimate the 

long-term wind resource at a site.  The three uncertainty sources that arise in long-term 

resource estimation are labeled δU8, δU9, δU10 and δk8, δk9, δk10.  They are: 

8. MCP Correlation Uncertainty. 

9. Weibull Parameter Estimation Uncertainty. 

10. Changes in the Long-term Average. 

 

8. MCP Correlation – Wind measuring campaigns at a specific site usually last for 

one year.  A process called “Measure-Correlate-Predict” is often employed that uses a 

longer data set from a nearby site (reference site) to obtain the estimate of the long-term 

wind resource at the site (target site).  The MCP procedure begins by using the concurrent 

data set to determine a statistical relationship between the target and reference site data.  

This relationship estimates the speed at the target site as a function of the speed at the 

reference site.  The relationship is then applied to the long-term reference site data set to 

estimate the target site data over this long-term period.  In this way, the long-term target 

site wind resource can be estimated.  It is important to use a reference site data set that 

has high quality, consistently measured wind speed data, with a high correlation with the 

target site, in order to obtain good estimates of the target site wind resource [7]. 

The utility of the MCP step is that it incorporates data sets longer than the one year of 

measured target site data, and therefore provides a more accurate estimate of the long-
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term wind resource at the target site [51],[52].  Often a linear regression MCP model is 

used, which can also be used to estimate the standard deviation of the prediction of the 

mean wind speed.  However, as shown by Rogers et al., “this approach significantly 

underestimates the actual standard deviation in all cases studied, often by a factor of 10” 

[52].  This is because the wind data relationship between two sites is serially correlated, 

and so linear regression theory cannot be used to estimate the uncertainty associated with 

MCP.  An alternative approach to estimating the uncertainty is proposed by Rogers et al. 

that uses a jackknife estimate of variance.  While the details of the jackknife approach are 

not discussed here, in essence the jackknife method “assesses the prediction uncertainty 

using the variability of the MCP predictions made by dropping out segments of the 

concurrent data” [52].  The results of the investigation indicate that the jackknife estimate 

provides a significant improvement over linear regression theory in estimating the 

uncertainty associated with MCP.  It is important to note that the current RERL jackknife 

estimate includes correction factors that adjust a slight underestimation by the original 

jackknife method.  The uncertainty due to MCP is a Type B uncertainty, as the process 

introduces an unknown bias into the estimate of the long-term wind resource.  In sum, 

whenever MCP is used to provide an estimate of the long-term wind resource at a site, 

the jackknife method should be used to estimate the uncertainty of U,¯ LT and kLT.  

Typical values for MCP uncertainties using the jackknife method are between 5% and 

10% for δU8 and δk8, although these values are very site dependent. 

 

 

 

δU8 δk8 Bias U8 Bias k8 
Jackknife Estimate Jackknife Estimate 0% 0% 
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9. Weibull Parameter Estimation Uncertainty – As discussed above, the MCP step is 

used to estimate U,¯ LT, cLT, and kLT, and the jackknife method can be used to estimate the 

uncertainty in these quantities.  An additional uncertainty arises when Weibull parameters 

are fit to the output of the MCP step.  Since the output data of MCP is not a perfect 

Weibull distribution, different estimation methods yield different values of the Weibull 

parameters.  The result is an additional uncertainty in the values of cLT, and kLT. 

There are several methods of estimating the Weibull parameters from a wind speed 

time series.  These methods include: empirical methods, method of moments, maximum 

likelihood estimates, least square linear regression, and chi-squared methods.  

Furthermore, each method produces a slightly different estimate of the parameters, 

depending on the data set.  When estimating the long-term Weibull parameters, one could 

use any of these methods.  If one person chose one particular method, and another person 

chose a different method, they would come up with different estimates for the Weibull 

parameters.  Since the long-term Weibull parameters are used to estimate AEP, the result 

is that these two people would estimate different values for the AEP despite using 

identical measured wind speed data.  Clearly, the estimation of Weibull parameters 

introduces an added uncertainty into the process. 

The variation in the estimate of the Weibull parameters is investigated in order to 

estimate this uncertainty.  Fourteen data sets of lengths ranging from one year to five 

years are used in this investigation.  Seven different methods are used to calculate both 

Weibull parameters from these data sets, and a pooled estimate of the standard deviation 

of the estimates is calculated.  The result is a 5% standard deviation between the various 

methods for estimating the shape factor k, but a nearly 0% standard deviation for the 
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scale factor, c.  This result is not surprising, since c is proportional to the mean wind 

speed, and there is no uncertainty in calculating the mean of a wind speed time series.  

Thus, the estimation of the Weibull parameters during the MCP step introduces no added 

uncertainty in U,¯ LT or cLT, but it does cause an additional 5% uncertainty in the estimate 

of kLT.  This is a Type B uncertainty, as using a single method for estimating the Weibull 

parameters does not reveal the variation between methods.   

 

 

 

10. Changes in the Long-Term Average – Natural climate changes and anthropogenic 

climate change can potentially cause the long-term wind resource to change at a given 

site over the turbine lifetime [6],[72].  Breslow and Sailor use climate models to estimate 

the potential change in mean wind speeds due to climate change [73].  The models 

predict that over the next 50 years, average annual wind speeds could change from 1% to 

3%.  Since wind turbines are likely to last for approximately 20 years, a value of 1% 

uncertainty for U,¯ LT seems reasonable for now.  A value of 1% should also be used for 

kLT since climate change could affect the distribution of wind speeds as well. 

 

 

 

3.3 Wind Resource Variability Uncertainty 

When the wind resource at a site is evaluated, a finite number of years of reference 

site data are used to estimate the long-term wind resource.  Essentially, a sample of 

δU9 δk9 Bias U9 Bias k9 
0% 5.0% 0% 0% 

δU10 δk10 Bias U10 Bias k10 
1.0% 1.0% 0% 0% 
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yearly wind resources is used to estimate the long-term wind resource at the site.  Thus, 

the potential for random error exists, since the years of data used to estimate the long-

term parameters might not, in fact, be representative of the true long-term values [6],[72].  

As discussed in Section 2.0, random error decreases as the number of samples increases.  

This implies that the longer the reference site data set used to estimate the long-term 

parameters, the less uncertainty in these estimates.  Thus, the potential for random error 

exists, and it causes uncertainty in two ways.  These two uncertainties are therefore Type 

A uncertainties, and they are labeled δU11, δU12 and δk11, δk12.  They are: 

11. Inter-Annual Variability Uncertainty. 

12. Uncertainty over Turbine Lifetime. 

 

11. Inter-Annual Variability Uncertainty – The annual mean wind speed and k at a 

given site vary from year to year.  These variations are referred to as inter-annual 

variations.  Twenty years is often accepted as the time period necessary to accurately 

characterize the mean wind speed and Weibull parameters, and thereby average out any 

inter-annual variations.  Consequently, when one uses site monitoring and MCP to 

estimate U,¯ LT, cLT, and kLT from a certain number of years of reference site data, there is 

a risk that the estimated value does not equal the historical long-term value.  The standard 

deviation (uncertainty) associated with these inter-annual variations depends on the 

specific location that is being assessed.  Justus et al. investigate forty sites with at least 

ten years of data in the U.S [9].  They find a range of inter-annual variations between 3% 

and 12% for annual mean wind speeds.  He does not investigate the variation of k.  For 

the six sites located in the northeast United States, the inter-annual variations of the 
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annual mean wind speed have an average value of 6%.  Klink determines the inter-annual 

variation of the annual mean wind speed and k at seven sites in Minnesota [11].  The 

average standard deviation at these sites is 5% for the annual mean wind speed, and 

approximately the same value for k.  Thus, based on the empirical data in the papers of 

Justus et al. and Klink, a 6% inter-annual variation in Massachusetts appears to be a 

reasonable value for both U,¯ LT and kLT.  In regions other than the northeast United 

States, one can use the results of Justus et al., or other studies that estimate the inter-

annual variability of the wind resource for that region.  The uncertainty associated with 

assessing a particular site can then be determined from basic statistical theory.  The 

uncertainty due to inter-annual variations is simply equal to 6% divided by the square 

root of the number of years of reference site data that are used to estimate the long-term 

wind resource at the site, as shown in Eq. 13. 

NkU /%61111 ==δδ   Eq. 13

The number of years used in this calculation is the length of the long-term reference 

data set used in the MCP calculations, and not the approximately one year of actual 

measured data at the target site. 

 

 

 

12. Uncertainty over Turbine Lifetime – This uncertainty is similar to, but distinct 

from, the inter-annual variability uncertainty.  The actual wind resource at a site during 

the operation of the turbine may be different from the true wind resource at the site.  

Once again, this uncertainty is simply the long-term inter-annual variability at the site 

δU11 δk11 Bias U11 Bias k11 

N/%6  N/%6  0% 0% 
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(6% in Massachusetts) divided by the square root of the wind turbine lifetime in years, 

which is usually estimated at twenty years.  According to Eq. 13, this value should be 

taken at approximately 1% for U,¯ LT and kLT, as both could potentially vary over this 

period. 

 

 

 

3.4 Site Assessment Uncertainty 

Wind speed measurements usually take place at heights significantly lower than the 

hub height of a typical modern wind turbine.  Because wind speeds typically increase 

with height, a wind shear model is used to extrapolate the estimated long-term wind 

resource to the hub height [17].  The wind shear model is created using the measured 

wind speed data.  The use of a wind shear extrapolation introduces uncertainty [12],[54].  

Furthermore, the tower used to measure the wind speed is often not at the exact location 

of the wind turbine(s).  Topographic effects can cause the wind speeds at separate 

locations at a site to differ.  When multiple wind turbines are installed at a site, the wind 

resource may vary between each turbine due to topography [7],[8].  In complex terrain, 

this effect can be significant.  Thus, it is critical to estimate the hub height wind resource 

at each of the turbine locations.   

Site assessment uncertainties arise when estimating the long-term, hub height mean 

wind speed and Weibull parameters at the probable turbine location(s), U,¯ LT_HUB, 

cLT_HUB, and kLT_HUB, from the long-term mean wind speed and Weibull parameters at the 

δU12 δk12 Bias U12 Bias k12 
1.0% 1.0% 0% 0% 
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measurement height and the measurement location, U,¯ LT, cLT, and kLT.  The two factors 

contributing to this uncertainty are labeled δU13, δU14 and δk13, δk14.  They are: 

13. Topographic Effects 

14. Wind Shear Model Uncertainty 

 

13. Topographic Effects – If the proposed wind turbine and the measurement tower 

are positioned in different locations, or when multiple turbines are installed, then local 

topography can cause different wind conditions at the various turbine locations, even if 

they are quite close together.  These effects can range from negligible to very significant, 

and obviously depend on the specific site being assessed [7].  Flow modeling is used to 

estimate the wind resource across the project area at each turbine location, based on the 

measured wind resource and the local terrain and topography.  The numerical models 

include equilibrium and dynamic models, such as WAsP or Site Wind [8].   

The uncertainty associated with this process is also very site dependent.  Brower 

notes that the variation in the prediction of the wind speed at the turbine locations can be 

used to estimate the uncertainty in the modeling [8].  He notes that a typical range for the 

uncertainty due to topographic corrections is between 2% and 10%.  This uncertainty is 

Type B, since the potential error in the topographic correction is an unknown bias. 

 

 

 

14. Wind Shear Model Uncertainty – Meteorological towers that measure wind 

speeds at potential sites typically have heights significantly shorter than the hub heights 

δU13 δk13 Bias U13 Bias k13 
Site Dependent Site Dependent Site Dependent Site Dependent 
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of modern wind turbines [12].  Consequently, the measured wind resource, U,¯ LT, has to 

be extrapolated up to the hub height to get an estimate of the wind resource at the hub, 

U,¯ LT_HUB.  This extrapolation is a significant source of error, often the largest source.  

The accuracy of the shear extrapolation is highly dependent on the particular shear model 

that is used.  However, one does not know beforehand which shear model provides the 

most accurate extrapolation.  Elkinton et al. explore the accuracy of shear models in flat, 

forested, and complex terrain [16].  In this analysis, there are three to five data sets for 

each type of terrain.  Each data set contains multiple years of data, and each has wind 

speed data at three heights.  The analysis uses data from the two lower heights to predict 

the mean wind speed at the highest height.  In this way, the accuracy of shear models is 

evaluated against real data.  Both the log law model and the power law model are used.   

For each type of terrain and each model, the average prediction error and the standard 

deviation of the prediction error are calculated.  These results can be used to estimate the 

average bias and uncertainty associated with shear extrapolation for each terrain type.  

However, it should be emphasized that these results are based on a limited number of 

sites, and any particular site could have very different shear properties.  To be 

conservative, one could use a margin of safety of 1.5 for the uncertainty to compensate 

for the limited number of data sets, although the numbers quoted below do not contain 

this margin of safety.  The principal findings of the study are summarized here: 

• For all types of terrain, the power law and the log law yield similar results, with 

no particular model being significantly better than the other.  The difference 

between them is so small compared to the scatter of the estimates that either 

model can be used. 
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• In flat terrain, the shear models underestimated the mean wind speed at hub height 

by an average of 1%.  This data is based on three sites.  It is recommended that a -

1% bias be assumed for U,¯ LT_HUB. 

• For sites with hills but no trees, the shear models overestimate the mean wind 

speed at hub height by an average of 6%.  This data is based on five sites.  It is 

recommended that a 6% bias be assumed for U,¯ LT_HUB. 

• For forested and complex terrain sites, the shear models overestimate the mean 

wind speed at hub height by an average of 2% in forested terrain.  This data is 

based on four sites.  It is recommended that a 2% bias be assumed for U,¯ LT_HUB. 

• The standard deviation of the prediction error for all twelve sites is approximately 

5%.  Thus, an uncertainty of 5% for the value of δU,¯ LT_HUB can be used for all 

shear predictions.  Again, this data is based on a limited number of samples.  

Especially in complex terrain, either hilly or forested, a margin of safety may be 

appropriate and a value of 7.5% could be used.   

• It is recommended that at least 200 days of data be used in the shear extrapolation 

to get a useful average shear value.  As one would expect, the shear errors 

decrease with data length.  The results from Elkinton et al. presented above are 

based on multi-year data sets.  However, Elkinton et al. also note that with more 

than 200 days of data, the scatter between individual 200-day segments is less 

than 1%. 

• Elkinton et al. do not investigate the extrapolation of the shape factor k with 

height.  However, a paper by Justus proposes a model for extrapolating k with 

height.  The model proposed is shown in Eq. 14, where the subscripts 1 and 2 
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denote the lower and higher heights, respectively.  The model indicates a weak 

dependence of k with height.  For example, with a measurement height of 50 m, 

and a hub height of 80 m, the ratio is 1.05. 
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Doran and Verholek use data sets from approximately 70 different sites to 

investigate the accuracy of the model proposed by Justus [74].  The results show 

that the ratio of the estimated k value to the true k value has a standard deviation 

of 18% and that the estimate over-predicted k by an average of 6%.  

Unfortunately, the investigation by Doran and Verholek does not differentiate the 

sites by terrain type, which could be useful in reducing the scatter of the 

predictions.  Furthermore, the data sets used in the evaluation of the model are 

from nuclear power plant sites, where the measurement heights are probably low 

to the ground and turbulence from the power plant possibly affects the 

measurements.  Because of these factors, the results are suspicious, and it is not 

recommended that they be used either to estimate k at hub height or to estimate 

the uncertainty of k due to shear. 

• Wieringa also investigates the variation of k with height [75].  He determines that 

k increases with height up until a reversal height, at which point k begins to 

decrease.  This reversal height is typically on the order of 60-100 m (depending 

on terrain), which is also the range of hub heights for modern wind turbines.  

These results indicate that extrapolating k with height is a highly uncertain 
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process, as k can either increase or decrease depending on the hub height and the 

reversal height.  Furthermore, Wieringa notes that the large scatter found in Doran 

and Verholek’s results using the Justus model is partially due to the mathematical 

formulation of the Justus model.  That is, the Justus model, which is a 

multiplicative equation, is affected by the “large-scale wind climate” at the site, 

which is unrelated to the local variation of k with height.  Essentially, the Justus 

model is highly dependent on the value k1, and k1 is unrelated to the actual height 

variation of k, which therefore causes the scatter.  In sum, the 18% standard 

deviation found by Doran and Verholek is not an appropriate value for the 

uncertainty in kLT_HUB.  Instead, Wieringa proposes a model that accounts for the 

reversal height, so that k decreases after the reversal height.  In practice, the 

Wieringa model provides a better means of predicting k than the Justus model, for 

a very limited number of sites.  This model is shown in Eq. 15, where zr is the 

reversal height and ck is an empirical constant equal to 0.0228. 
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The use of this model can be investigated.  A measurement height of 50 m and 

a hub height of 80 m are assumed.  The reversal height is then varied between 60 

m and 100 m, and k2 is estimated.  The standard deviation of k2 as a function of 

reversal height is 6% for a value of k1=2.  If the values of k1, hub height, and 

measurement height are varied, then the standard deviation varies slightly.  The 

maximum value of the standard deviation for realistic values of k1, hub height, 

and measurement height is 9%.  This value is half of the variation found by Doran 

and Verholek, and is probably more realistic as it is less dependent on the “large-
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scale wind climate” discussed above.   Thus, one can assume that the shear 

extrapolation introduces a 5% uncertainty for kLT_HUB (The 9% range is divided by 

the square root of three, as shown in Eq. 8).   However, the Wieringa model 

cannot be used in practice for extrapolating k because the reversal height is 

unknown.  Furthermore, the model is based on a limited number of sites, and so it 

may not be appropriate for all sites.  Wieringa also provides a simple linear model 

that does not depend on reversal height, but this model is only accurate when 

extrapolating to heights below the reversal height, and once again it relies on a 

small number of data sets.  Overall, when the highest measurement height of k is 

on the order of 50 m, and the hub height is on the order of 80 m, both the Justus 

model and the simplified Wieringa model predict small increases in k with height.  

In practice, it appears to be reasonable to assume that k remains constant with 

height (so kLT = kLT_HUB), or increases a small amount on the order of 5-10% using 

a linear scaling factor.  Future work could investigate k extrapolation further.  

Again, to account for the potential variability of this assumption, one can assume 

that the shear extrapolation introduces a 5% uncertainty for kLT_HUB.  All of these 

uncertainties are Type B, since they are due to unknown bias introduced in the 

shear extrapolation step. 

Flat Terrain 
δU14 δk14 Bias U14 Bias k14 
5.0% 5.0% -1% 0% 

 

Hilly Terrain 
δU14 δk14 Bias U14 Bias k14 
5.0% 5.0% 6.0% 0% 
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Forested Terrain 
δU14 δk14 Bias U14 Bias k14 
5.0% 5.0% 2% 0% 

 

3.5 Summary of Wind Resource Uncertainties 

The tables below summarize the four categories of bias and uncertainty discussed 

above. 

I. Wind Speed Measurement Uncertainty  
 δUi δki Bias Ui Bias ki 
1 1.5% 0% 0% 0% 
2 0.3% 0% 0.5% 0% 
3 0.5% 0% 0% 0% 
4 1% or 2%  0% 0%, 3%, or 4% 0% 
5 0.5% or 1.0% 0% or 1.0% 0% or -1.5% 0%  
6 0.5% 0% 0% 0% 
7 0.03 * (% Missing) 0.03 * (% Missing) 0% 0% 

 

II. Long-Term Resource Estimation Uncertainty 
 δUi δki Bias Ui Bias ki 
8 Jackknife Estimate Jackknife Estimate 0% 0% 
9 0% 5.0% 0% 0% 

10 1.0% 1.0% 0% 0% 
 

III. Wind Resource Variability Uncertainty 
 δUi δki Bias Ui Bias ki 
11 N/%6  N/%6  0% 0% 
12 1.0% 1.0% 0% 0% 

 

IV. Site Assessment Uncertainty 
 δUi δki Bias Ui Bias ki 
13 Site Dependent Site Dependent Site Dependent Site Dependent 
14 5% 5% -1%, 6%, or 2% 0% 
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3.6 Estimation of the Wind Resource and the Wind Resource Uncertainty 

Once the wind speed measurements at the site are completed and the fourteen sources 

of wind resource uncertainty are estimated, an estimate can be made of the long-term hub 

height wind resource and the associated uncertainty in this estimate.  This Section 

describes the process that should be used for estimating U,¯ LT_HUB, cLT_HUB, and kLT_HUB, 

and their respective uncertainties. 

3.6.1 Estimation of U,¯ LT_HUB, cLT_HUB, and kLT_HUB 

The steps that should be used to determine the long-term, hub height wind resource 

are listed below. 

1. Apply the bias estimates from Group I (Wind Speed Measurement Uncertainty) to 

UM.  The anemometer vertical sensitivity, the anemometer overspeeding, the 

anemometer vertical turbulence effects, and the tower effects can introduce a bias 

into the measurement of the wind speed.  Thus, the measured wind speed data, 

UM, should be scaled by these values.  If a 3% bias due to anemometer vertical 

sensitivity is used, then all values of UM should be multiplied by 0.97. 

2. Use UM to determine the appropriate shear parameter.  If the power law is used, 

then solve for α.  If the log law is used, then solve for z0. 

3. Use UM and data from a long-term reference site in an MCP algorithm.  The 

output of the MCP algorithm is U,¯ LT, and kLT.  The Weibull shape parameter can 

be estimated in a variety of ways, as described in Section 3.2.   

4. Either utilize the assumption that k does not change with height, and therefore kLT 

= kLT_HUB, or apply a small correction factor to account for an increase in k with 

height. 
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5. Apply the chosen shear model to U,¯ LT.  For example, if one is utilizing the 

power law, then after determining α in Step 2, Eq. 16 could be used to calculate 

U,¯ LT_HUB.  h3 is the probable hub height, and h2 is the highest measuring height. 

( )α23_ / hhUU LTHUBLT =   Eq. 16

6. If multiple turbines are likely or if the met tower and turbine location are not 

identical, utilize flow modeling software to adjust the estimated hub height wind 

resource at the met tower site to the various turbine locations. 

7. Apply the bias estimates from Group IV (Site Assessment Uncertainty) for the 

mean wind speed to U,¯ LT_HUB.  For example, if the site is in flat terrain, and a -

1% shear bias from above is used, then U,¯ LT_HUB should be increased by a factor 

of 1.01. 

8. Calculate the value of cLT_HUB at each turbine location from the values of U,¯ 

LT_HUB and kLT_HUB.  This can be done using Eq. 17, where Γ is the gamma 

function.   

( )kUc /11/ +Γ=   Eq. 17

These eight steps should be used to estimate U,¯ LT_HUB, cLT_HUB, and kLT_HUB from the 

measured wind speed data. 

3.6.2 Estimation of δk 

Once the long-term wind resource is determined as described in Section 3.6.1, the 

uncertainties can then be estimated using Eq. 11.  This Section describes the estimation of 

δk; the estimation of δU and δc is described next in Section 3.6.2.   

The uncertainty of the Weibull shape factor, δk, is easily calculated because either no 

shear extrapolation is applied to k or a simple scale factor is used to extrapolate k with 
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height.  In these cases, the sensitivity factors for each uncertainty source and category of 

uncertainty equal one.  Thus, the fourteen sources of uncertainty for the shape factor can 

simply be combined using the RSS method to yield δk.  This is shown in Eq. 18.  If a 

more complex extrapolation method is utilized, it may not be possible to calculate δk in 

this way. 

( ) ( ) ( )2
14

2
2

2
1 kkkk δδδδ +++= …   Eq. 18

3.6.3 Estimation of δU and δc 

The steps to determine δU and δc are now listed. 

1. Use the “root-sum-square” (RSS) method to combine the uncertainty values for 

each category of uncertainty.  This is shown in Eq. 19.  The subscripts “M”, “LT”, 

“V”, and “SA” correspond to uncertainty in the four categories of uncertainty.  

Within each category of uncertainty, the sensitivity factors are equal to one.   
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 Eq. 19

The general equation to determine δU, which is the long-term hub height 

mean wind speed uncertainty, is derived from Eq. 11.  The result is shown in Eq. 

20.  The sensitivity factors for each category of uncertainty are SFU,M, SFU,LT, 

SFU,V, and SFU,SA. 

( ) ( ) ( ) ( )2,
2

,
2

,
2

, SASAUVVULTLTUMMU USFUSFUSFUSFU δδδδδ ⋅+⋅+⋅+⋅=   Eq. 20

2. Determine the sensitivity factors for each category of uncertainty.  The sensitivity 

factor for the wind resource variability uncertainty and the site assessment 
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uncertainty are both equal to one.  Thus, SFU,V = SFU,SA = 1.  If a linear model is 

used in the MCP step, then the sensitivity factor for the long-term resource 

estimation, SFU,LT, is also equal to one.  RERL uses a linear MCP model, dubbed 

the “Variance Ratio” method, described in Chapter II, Section 5.2.  From an 

uncertainty perspective, using a linear model helps simplify the calculation of the 

overall wind resource uncertainty.   

The sensitivity factor for the measurement uncertainty, SFU,M, is not equal to 

one.  This is identified by Taylor et al. [76].  SFU,M is not equal to one because the 

measured wind speed is used to calculate the shear parameter (Step 2 in Section 

3.6.1), and the shear parameter is then used to estimate U,¯ LT_HUB (Step 5 in 

Section 3.6.1).  The result is that error in the measurement of the wind speed 

causes error in the shear parameter calculation, which then causes additional error 

in the estimate of U,¯ LT_HUB.  Thus, the contribution of measurement uncertainty 

to the total uncertainty is magnified due to shear extrapolation, and so the 

sensitivity factor for the measurement uncertainty is greater than one.  It is 

important to emphasize that this effect is not due to any error in the wind shear 

model.  Rather, it is a mathematical byproduct of using uncertain data to 

determine an extrapolation parameter.    

SFU,M can be calculated as follows.  h1, h2, and h3 are the heights of the lower 

measurement anemometer, the higher measurement anemometer, and the hub 

height, respectively.  U,¯ M1 and U,¯ M2 are the measured mean wind speeds at the 

lower and upper anemometer, respectively.  When the power law is used, the 

measured data can be used to calculate the shear parameter, α, using Eq. 21. 
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( ) ( )1212 /ln//ln hhUU MM=α   Eq. 21

The predicted hub height mean wind speed, U,¯ HUB, can then be calculated 

using Eq. 22. 

( ) ( ) ( )1212 /ln//ln
232 / hhUU

MHUB
MMhhUU =   Eq. 22

If it is assumed that the uncertainties in the mean wind speeds are normally 

distributed, and there is no uncertainty in the three heights, then the uncertainties 

can be related using Eq. 23.  The uncertainties in Eq. 23 are absolute 

uncertainties. 
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Next, it is assumed that the fractional standard uncertainty of U,¯ M1 and U,¯ 

M2 (δU,¯ M1 and δU,¯ M2), are both equal to the fractional standard measurement 

uncertainty, δUM, as shown in Eq. 24.  That is, it is assumed that the measurement 

uncertainties at both heights are identical.  
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Finally, after substituting Eq. 24 into Eq. 23, and after some algebraic 

manipulation, the ratio of the fractional uncertainty in the predicted mean wind at 

height h3, δU,¯ HUB, to the fractional standard measurement uncertainty, δUM, can 

be written using Eq. 25.  This ratio is also equal to the sensitivity factor for the 

measurement uncertainty, SFU,M.  
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The partial derivatives can be calculated using Eq. 22.  The ratios U,¯ M1/U,¯ 

M2 and U,¯ M2/U,¯ HUB can be calculated using Eq. 22.  When these calculations 

are substituted into Eq. 25, SFU,M can be written as an analytic function of only 

the three measurement heights.  The final result for SFU,M is shown in Eq. 26. 
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 SFU,M can be determined for any configuration of measurement heights and 

turbine hub height.  SFU,M increases as the two measurement anemometer heights 

are closer together.  Therefore, the anemometers should be spaced as far from 

each other as possible.  Overly close spacing of anemometers can cause very large 

values of SFU,M, and so larger values of δU.  On the other hand, the lower level 

anemometer should not be placed too close to the ground, as obstructions and 

surface roughness changes can distort the wind speed at these low heights. 

3. Calculate the overall uncertainty in the long-term hub height mean wind speed, 

δU.  This is accomplished using Eq. 27. 

( ) ( ) ( ) ( )2222
, SAVLTMMU UUUUSFU δδδδδ +++⋅=   Eq. 27

4. Determine δc.  δc can then be calculated based on δU and δk using Eq. 17.  The 

general equation for δc is shown in Eq. 28.    

( ) ( )2,
2

, kSFUSFc kcUc δδδ ⋅+⋅=   Eq. 28

SFc,U is simply equal to one due to the linear dependence shown in Eq. 17.  

The formula for SFc,k is shown below in Eq. 29, where ψ is the Psi function. 



 100

kk
c
k

k
cSF kc /)/11(, +=
∂
∂

= ψ   Eq. 29

3.7 Example Calculation of δU, δc, and δk 

An example calculation of δU, δc, and δk helps illustrate the process described in 

Section 3.6.  The tables below indicate the values of δUi and δki that are used in the 

calculation.  The assumptions that generate these values are: 

• δU4 = 1%: IEC approved anemometer used for site assessment 

• δU7 = δk7 = 0.03%: 1% of the measured data set is missing. 

• δU8 = δk8 = 5%: Example result of the jackknife estimate. 

• δU11 = δk11 = 2.4%: 6 years of long-term data are available for MCP, so N = 6. 

• δU13 = δk13 = 0%: No topographic effects, and the turbine is positioned at the met 

tower location. 

• δU14 = 5.0%, δk14 = 5.0%: Flat terrain. 

• k is assumed to be constant with height. 

• Lastly, assume h1 = 35 m, h2 = 50 m, and h3 = 80 m. 

 

I. Wind Speed Measurement Uncertainty  
 δUi δki Bias Ui Bias ki 
1 1.5% 0% 0% 0% 
2 0.3% 0% 0.5% 0% 
3 0.5% 0% 0% 0% 
4 1%  0% 0% 0% 
5 0.5%  0%  0%  0%  
6 0.5% 0% 0% 0% 
7 0.03% 0.03% 0% 0% 

 

II. Long-Term Resource Estimation Uncertainty 
 δUi δki Bias Ui Bias ki 
8 5% 5% 0% 0% 
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9 0% 5.0% 0% 0% 
10 1.0% 1.0% 0% 0% 

 

III. Wind Resource Variability Uncertainty 
 δUi δki Bias Ui Bias ki 
11 2.4% 2.4% 0% 0% 
12 1.0% 1.0% 0% 0% 

 

IV. Site Assessment Uncertainty 
 δUi δki Bias Ui Bias ki 
13 0% 0% 0% 0% 
14 5% 5.0% 0% 0% 

 

The steps to calculate δU are: 

1. Calculate the uncertainty for each group of uncertainty by using the RSS method.  

The result is: 
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2. Calculate SFU,M using h1, h2, h3 and Eq. 26:  SFU,M = 2.67. 

3. Calculate the overall uncertainty in U,¯ LT_HUB, δU, using Eq. 27.   

( ) ( ) ( ) ( )
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The steps to calculate δk are: 

1. Combine all fourteen sources of uncertainty using the RSS method 
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The steps to calculate δc are: 

1. Calculate SFc,k using Eq. 29.  If kLT_HUB = 2.5, then: 
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2. Calculate δc using Eq. 28.  Because SFc,k is so small, δU and δc are almost exactly 

equal. 

( ) ( )
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Thus, once all fourteen sources of uncertainty are estimated, they can be combined to 

yield a total uncertainty for the long-term values of U,¯ LT_HUB, cLT_HUB, and kLT_HUB.  For 

this example, δc = δU = 9.3% and δk = 9.1%.  If SFU,M is assumed to equal one, then δc 

and δU are reduced to 7.9%. 

3.8 Summary of Wind Resource Uncertainty 

Overall, this Section describes a comprehensive method for handling uncertainty for 

this type of wind resource assessment.  Along with describing the uncertainty sources that 

arise in this process, a method for estimating the long-term hub height wind resource and 

its respective uncertainty is provided.  The techniques for estimating uncertainty rely on 

the use of sensitivity factors.  Specifically, an explicit formula to calculate the 

measurement uncertainty sensitivity factor is provided.  This magnification of the 
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measurement uncertainty due to shear extrapolation should not be ignored, as it can affect 

the overall wind resource uncertainty. 

In general, other sources of uncertainty are possible in the site assessment process, 

although they are not likely to be large relative to those identified above.  Furthermore, 

alternative methods of performing a site assessment are also viable; for instance 

mesoscale and microscale modeling can be used instead of MCP [77].  These alternative 

site assessment methods would necessitate modification to the uncertainty analysis 

approach outlined above.  However, many of the techniques would still be applicable. 

4.0 Wind Turbine Power Production and Uncertainty 

Section 3.0 focuses on the process of evaluating the wind resource at a site and the 

associated uncertainty.  Like the wind resource, the determination of the power curve and 

power production of a wind turbine are also potentially subject to error, which then 

causes uncertainty in the estimate of AEP.  This Section investigates the uncertainty in 

the power production of a wind turbine.  The process of adjusting a power curve for a 

specific site is also described.   

4.1 Power Curve and Power Production Uncertainty Sources 

There are three sources of power curve and power production uncertainty discussed in 

this Section labeled δP1, δP2, and δP3: 

I. Wind Turbine Specimen Variation Uncertainty. 

II. Power Curve Uncertainty. 

III. Air Density Uncertainty. 
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Each of these uncertainties is due to Type B errors.  The bias of the power curve is 

not estimated in this Section, so only the uncertainty is presented in the tables after each 

source or error.  In general, when power curves are discussed in this Section, it is 

assumed that the wind turbine is a variable speed, pitch controlled turbine with constant 

power output above rated wind speed. 

4.1.1 Wind Turbine Specimen Variation Uncertainty  

Frandsen and Christensen note that within a particular model of a wind turbine, 

individual turbines could have power curves that vary from the “reference” power curve 

quoted by the manufacturer [57].  These variations are likely due to manufacturing 

variations.  They state that no thorough investigation of these variations has taken place, 

and so they choose a tentative estimate of 5% uncertainty due to “specimen variation” 

[57].  A report by Risø estimates that the variation of power curves for a given wind 

turbine model is 2%-3% [36].  A value of 3% is recommended here, unless there is 

information to suggest another value.   

This uncertainty is assumed to be Type B.  One could argue that if the turbines are 

randomly selected from the population of turbines, then the uncertainty should decrease 

as the total number of turbines increases.  This supposition would assume a Type A error.  

However, the manufacturing variations of the turbines could be localized in a specific 

batch of turbines (e.g., a specific machine produced slightly different blades), so that all 

of the turbines at a wind farm varied from the reference power curve by the same amount 

(i.e., the same bias).  Thus, to be conservative, it is assumed that the uncertainty due to 

specimen variation is 3% regardless of the number of turbines at the wind farm. 

δP1 
3.0% 
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4.1.2 Power Curve Uncertainty  

When power curves for wind turbines are measured, several factors contribute to the 

uncertainty in this “measured power curve”.  The primary factor is uncertainty in the 

wind speed that the turbine is responding to, as the uncertainty in the actual power being 

produced is quite small.  While the wind speed at the hub height is known to a fairly high 

accuracy, the effects of turbulence and shear across the rotor face are not taken into 

account, and consequently the mean wind speed averaged over the rotor face is uncertain.  

This uncertainty is reflected in the power curve, as there are vertical error bars around the 

power value for a given wind speed, as shown in Figure 14 [13]. 
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Figure 14 – Example Power Curve with Error Bars  

Moreover, for variable speed, pitch controlled turbines the error bars are smaller for 

wind speeds above the rated wind speed and for low wind speeds.  On the other hand, 

there is more uncertainty for moderate wind speeds.  For simplicity, these uncertainties at 

each speed can then be converted into an overall power curve uncertainty, which is 

assumed to be constant across all speeds.  While the IEC standards require manufacturers 

to calculate the uncertainty of the power curve of a turbine during testing, these values 

are not readily available from the manufacturers.  Contact with industry sources indicated 

an approximate overall value of 5%.  Pedersen et al. estimate a value between 6%-8% 

[36].  Frandsen and Christensen estimate a value between 5% and 10% [57].  The Danish 

Wind Energy Association likewise quotes a value of 10% [78].  A value of 7.5% can be 



 107

assumed for the uncertainty of the measured power curve, as it is in the middle of the 

range of values discussed above. 

This issue is complicated because the power curve of a wind turbine is site dependent, 

and not solely a function of the hub height wind speed.  The turbulence, air density, and 

shear characteristics of a site affect the power curve of a turbine, with the result that a 

turbine at a specific site could produce either more or less power than the power curve 

indicates at a given wind speed.  The measured power curve specifically corresponds to a 

site that meets the IEC standards, which require a flat site with very low turbulence [13].  

Thus, a site-specific power curve is needed to estimate energy production at a site, 

especially when the terrain is complex.  The manufacturer generally determines this site-

specific power curve, based on the turbulence, air density, and shear characteristics of the 

site.  The manufacturer and the developer then agree on this “warranted power curve”.  

The method by which the manufacturer estimates the site-specific warranted power curve 

is proprietary and likely depends on the control system of the turbine, as well as the legal 

language in the contract.  A manufacturer often performs a site calibration and power 

performance test after installation to demonstrate that the turbines do in fact meet the 

requirements of the warranted power curve and the contract.  In regards to site 

assessment and uncertainty, several remarks can be made: 

• A developer should certainly obtain an estimate of the site-specific power curve 

from the manufacturer before any final financial decisions are made.  The 

discrepancy between the warranted power curve and the measured power curve 

could make the difference between a successful and failed development.  Site 
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calibration and power performance testing can then confirm the accuracy of the 

estimated site-specific power curve. 

• The site calibration and power performance testing procedure is subject to similar 

uncertainty as the original measurement of the power curve.  Therefore, after 

verification of the power curve at the site, the uncertainty can be assumed to be 

7.5%. 

• During development, before the actual installation of the turbines, the developer 

utilizes the estimated site-specific power curve from the manufacturer to estimate 

the energy production at the site, and ultimately the profitability.  That is, the 

decision of whether or not to develop a site is made with an estimated site-specific 

power curve, before power performance verification is possible.  This estimated 

site-specific power curve is derived from the measured power curve.  Also, as 

stated above, the method used by individual manufacturers to adjust the measured 

power curve to a specific site is proprietary and unavailable.  At a minimum, the 

uncertainty in the site-specific power curve is at least as large as the uncertainty in 

the measured power curve.  In actuality, it is likely to be appreciably larger due to 

added uncertainty in taking the turbulence, air density, and shear characteristics 

into account.  To date, no value for this uncertainty is determined, primarily due 

to the confidential nature of the method.  With no better option, a 10% uncertainty 

can be assumed, as it is larger than the 7.5% uncertainty of the measured power 

curve.  In the future, this value can hopefully be determined based on actual data. 

• In the very early stages of development, a developer may wish to obtain a 

“ballpark” estimate of the energy production.  A simple method to adjust for the 
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air density at the site can be used to estimate the site-specific power curve.  This 

method is described in Section 4.2.  The method does not take the turbulence or 

shear characteristics of the site into account, nor does it consider the control 

strategy of the turbine.  Thus, this estimated power curve is subject to even more 

uncertainty than the site-specific power curve.  Again, no data are currently 

available to estimate this uncertainty.  A value of 12.5% is recommended here 

with no justification.   

δP2 
7.5%, 10.0%, or 12.5% 

 

4.1.3 Air Density Uncertainty  

Seasonal variations in air density could potentially affect the accuracy of the energy 

production estimate.  The uncertainty due to air density variations is therefore explored.  

In most locations in the world, the density changes with the seasons, causing the power 

production to be different in different seasons, even at identical wind speeds.  This issue 

is investigated and two major conclusions can be drawn. 

• Wind turbine annual energy production calculations are fairly insensitive to 

seasonal density effects.  That is, the calculated energy output of a turbine does 

not change greatly if the average yearly density is used to adjust the calculation, 

or if the seasonal fluctuations are taken into account.  For a sample power curve, 

the AEP can be estimated for two cases: one where the average density of the year 

is used and one where seasonal fluctuations are taken into account.  Even when 

large seasonal density fluctuations are used (and typical seasonal wind speed 

variations at Massachusetts Sites), the effect on AEP estimates is less than or 
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equal to 1%.  Thus, for simplicity, one could adjust the power curve using the 

average annual air density, and therefore ignore seasonal variations.  A 0.5% 

uncertainty in the power output can be assumed, using Eq. 9.  Thus, δP3 = 0.5%. 

• If there is an error in the calculation of the average annual density, then this error 

causes an error in the AEP estimate of approximately half the magnitude of the 

density error.  For example, a 1% error in the calculation of density causes a 0.5% 

error in the AEP.  In essence, the sensitivity factor for the air density measurement 

uncertainty is approximately 0.5.  This is because at higher wind speeds, above 

the rated wind speed of a turbine, an error in the density estimate has no effect on 

the AEP calculation (for variable speed, pitch controlled turbines).  To date, no 

determination of the uncertainty in the actual density estimate is made, although 

one would assume that the annual density could be calculated with high accuracy.  

In practice, this error is likely to be negligible and is assumed so for this Chapter. 

δP3 
0.5% 

 

4.2 Air Density Normalization 

In general, power curves are given for atmospheric conditions corresponding to 

standard temperature and pressure (STP) at sea level.  The air density at these conditions 

is the rated air density for the power curve, and it usually equals 1.225 kg/m3.  The 

density of the air has a direct effect on the power production of the turbine, and so if the 

turbine is sited at a location with an average air density different than the rated air 

density, the power curve must be adjusted (normalized) for the site.  When a developer is 

purchasing turbines from a manufacturer, the manufacturer most likely adjusts the power 
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curve for the air density at the site to provide a site-specific power curve to the developer.  

However, when a preliminary site assessment is being performed, the manufacturer 

adjustments may not be available, and one must normalize the power curve on one’s own 

in order to then estimate AEP.  This Section describes one method for normalizing the 

power curve at a site with a different annual air density than the rated value.  This method 

does not take the site-specific turbulence and shear characteristics into account. 

For variable speed, pitch-regulated turbines, the IEC power performance standards 

recommend adjusting the wind speed values from the power curve data to normalize the 

power curve [13].  That is, the value of the power output of the turbine is not changed; 

rather the corresponding wind speed for each power output value is adjusted.  This 

normalization equation is shown in Eq. 30, where Vn is the normalized velocity value, V0 

is the original velocity value, ρn is the actual density at the site, and ρ0 is the rated density 

value for the turbine (usually the STP value of 1.225 kg/m3). 

( ) 3/1
00 /* nn VV ρρ=   Eq. 30

Thus, each value of wind speed in the power curve data is adjusted using Eq. 30, 

which results in a normalized power curve that is specific to the density value at the site.  

An example is shown in Figure 15.  Figure 15 shows a GE 1.5 MW power curve under 

three conditions: rated density of 1.225 kg/m3, a low density site with a value of 1.0 

kg/m3, and a high density site with a value of 1.45 kg/m3.   
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Figure 15 – Power Curves for Different Density Sites 

The effect of the density normalization is seen clearly in Figure 15.  When the density 

is higher than the rated density, the power curve is shifted to the left, which results in 

more power being produced for wind speeds below rated wind speed and the turbine 

reaching rated power at a lower wind speed than the rated wind speed.  Conversely, when 

the density is lower than the rated density, the power curve is shifted to the right, which 

results in less power being produced for wind speeds below rated wind speed and the 

turbine reaching rated power at a higher wind speed than the rated wind speed.  However, 

the cut-in and cut-out wind speeds are unaffected.  This method does not take the control 

system of the turbine into account, and therefore is potentially subject to significant error.  

But, as a “back of the envelope” method, it is very useful.  In sum, the effect of air 
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density clearly must be taken into account when it differs from the rated value, and this 

Section describes one method for accomplishing this task. 

4.3 Summary of Power Curve and Power Production Uncertainties 

The estimated values of the uncertainty for the three uncertainty sources discussed 

above are summarized in the table below.  

 δPi 
1 3% 
2 7.5%, 10%, or 12.5% 
3 0.5% 

 

4.4 Combination of Power Curve and Power Production Uncertainty 

The three sources of uncertainty discussed in Section 4.1 can then be combined into a 

total uncertainty in the power output, δP.  The uncertainty sources are assumed to be 

independent, and sensitivity factor for each uncertainty source is equal to one, so the RSS 

method can be used, as shown in Eq. 31.   

( ) ( ) ( )23
2

2
2

1 PPPP δδδδ ++=   Eq. 31

4.5 Example Calculation of δP 

For this example, it is assumed that a manufacturers site-specific power curve is 

supplied, so δP2 = 10%.  The total power output uncertainty, δP, is simply: 

( ) ( ) ( )
( ) ( ) ( )

%5.10
5.0100.3 222

2
3

2
2

2
1

=

++=

++= PPPP δδδδ
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5.0 Energy Production Losses and Uncertainty 

This Section describes the factors that contribute to uncertainty in the estimate of 

energy losses.  These factors are distinct from those described in the previous Section, 

which related to uncertainty in the instantaneous power output.  Those factors that 

contribute to lost energy production are referred to as the “energy loss factors.” 

Essentially, they quantify the deviation between the actual turbine performance, and the 

ideal turbine performance, due to specific sources of energy loss.  The three energy loss 

factors identified in this Section are:  

I. Availability Losses 

II. Fouling Losses 

III. Array Losses 

 

For each of the three energy loss factors discussed in this Section, a general 

description is provided first.  Next, the expected value or range of expected values is 

given.  It should be noted that other sources of energy loss are possible, such as electrical 

losses and high wind speed hysterisis.  These losses are not considered in this Section.   

The energy loss factors are assumed to be normally distributed quantities, so the 

uncertainty values are once again the percentage standard uncertainty.  This assumption 

of a normal distribution must be justified. 

5.1 Justification for Normally Distributed Energy Loss Factors 

The assumption of a normal distribution must now be justified.  The energy loss 

factors, by definition, have a range between 0% and 100% (i.e. 0 and 1).  A normal 

distribution is defined between [ ]∞∞− , .  This is a clear contradiction, as a normally 
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distributed energy loss factor implies the possibility for a value less than 0 or greater than 

1.  Despite this contradiction, normally distributed energy loss factors are used, and there 

is a sound mathematical basis for their use.   

The yearly availability of a wind farm is not a normally distributed quantity about its 

expected value.  This can be seen clearly in the histogram in Figure 16.  The data in 

Figure 16 show the number of occurrences of yearly availability values for 25 different 

wind farms, with a total of 104 wind farm-years of operation.  The mean availability is 

approximately 94%, and the distribution is clearly asymmetrical, with an upper limit of 

100%.  These data are compiled from a variety of North American wind farms by Jones 

[79].   

The data in Figure 16 can be fit with a Weibull distribution, for example.  The choice 

of a Weibull distribution is fairly arbitrary, though it does provide a good fit to the 

empirical data.  The Weibull approximation to the data is also shown in Figure 16.  The 

result for the shape factor is a value of k=1.5.  Thus, based on empirical data, the yearly 

availability of a wind farm can be approximated by a Weibull distribution with a shape 

factor value of k=1.5. 
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Figure 16 – Wind Farm Availability Data 

However, the yearly availability is not the quantity used in energy production 

estimates.  A developer is interested in the average availability over the approximately 

twenty year lifetime of the project.  Thus, the quantity of interest is the lifetime 

availability of the wind farm, or the average of the twenty yearly availabilities.  The 

distribution of the lifetime availability can be determined using a “Monte Carlo” 

simulation.  The simulation proceeds as follows: 

1. Using a Matlab function, twenty values are randomly sampled from the Weibull 

distribution fit shown in Figure 16. These twenty values represent a random set of 

wind farm yearly availability values. 

2. The twenty yearly availability values are averaged to get the lifetime availability. 

3. This process is repeated 100,000 times. 
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The distribution of the lifetime availability values can then be plotted in a histogram.  

This is shown in Figure 17.  A normal distribution can be fit to the data.  This is shown in 

Figure 17 as well.  The mean is 0.94 and the standard deviation is 0.009. 
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Figure 17 – Distribution of Lifetime Availability Data 

Thus, while the distribution of yearly availability values can be approximated by a 

Weibull distribution, the distribution of lifetime availability values is very closely 

approximated by a normal distribution.  This result should not be surprising, and it 

follows directly from the central limit theorem.  The theorem states that the distribution 

of the mean of random samples taken from any other distribution is normally distributed 

as the number of samples becomes large.  In the case of the yearly availability data, only 
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twenty samples are taken from the Weibull distribution, which causes the resulting 

distribution of the mean to be not exactly normal.  However, there are still enough 

samples that a normal distribution provides a good approximation.   

This result makes intuitive sense as well.  The yearly availability distribution from 

Figure 16 indicates that there is approximately a 10% chance of getting an availability 

value less than 0.90 in a single year.  However, the chance of getting availability values 

less than 0.90 over the lifetime of the project is extremely small, and this is reflected in 

Figure 17.  Over a  twenty year period, it’s unlikely that the average availability is much 

different than the expected value.   

This result is applied to all three energy loss factors.  Like the availability, the yearly 

distributions of the fouling and array loss energy loss factors are probably not normally 

distributed.  Instead, they most likely follow a similar asymmetrical distribution, with an 

upper limit of one.  However, the distribution of the twenty year average once again 

follows a normal distribution, due to the central limit theorem.  Thus, all three energy loss 

factors are characterized by normal distributions.   

There is still the possibility for values greater than one when normally distributed 

energy loss factors are assumed, and so a contradiction remains.  However, in general the 

probability of a value greater than one is so small that it is completely negligible.  In the 

availability example, the probability of a lifetime availability value greater than one is 2 x 

10-9 %.  Clearly the contradiction can be ignored in this case.   

5.2 Availability Losses and Uncertainty 

Wind turbines are sometimes shut down for scheduled inspection and maintenance, or 

for unscheduled repair.  During these shut downs, the wind turbine clearly cannot 
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produce any energy, and so the AEP is reduced.   The availability is simply defined as the 

percentage of time that a turbine is operable.  It is generally assumed that modern wind 

turbines have availabilities on the order of 97% [78].  On the other hand, Jones finds that 

that wind farms in North America have an average availability of about 94% [79].  

However, the issue is not so simple, as the average value of the availability does not tell 

the whole story.  Availability does not necessarily affect energy production linearly.  For 

example, scheduled maintenance is usually performed in the summer time, when the days 

are longer and the wind speeds are lower, and so the turbines may be producing very little 

power.  In this way, even though the wind turbine is shut down 3% of the time (for 

example) for maintenance, the reduction in the turbines’ energy production can be nearly 

negligible.  On the other hand, unscheduled repairs can cause a decrease in energy 

production disproportionate to the actual time that the turbine is not operating.  If a 

component breaks and causes a turbine to shut down, it is more likely to occur during 

high wind speeds, perhaps in the winter.  So even if the turbine repair results in 97% 

availability, the energy production would be reduced by more than 3%.  Also, in the case 

of offshore turbines, repairs may be greatly delayed due to weather-related and 

scheduling issues, causing an even larger loss in energy production.  Thus, to truly 

determine how availability affects energy production, the relative energy loss due to 

scheduled and unscheduled maintenance must be determined. 

Jones finds that, on average, the larger lost energy production during unscheduled 

maintenance outweighs the smaller lost energy production during scheduled maintenance.  

Thus, the energy production is reduced by more than just the value of the availability.  In 

this Chapter, the actual amount that AEP is reduced due to maintenance is labeled ELFAV.  
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ELFAV is equal to the actual AEP divided by the AEP if no maintenance or repairs are 

done on the turbine.  ELFAV is distinct from the typical definition of availability, as it 

accounts for the reduction in energy production due to maintenance and repairs, and is 

not simply calculated based on the annual reduction in operating time.  The value of 

ELFAV has a clear upper and lower limit.  The upper limit is 100%.  In the lower limit, the 

largest possible energy loss occurs if the turbine is operating at rated power during the 

entire time it is shut down for repairs and maintenance.   

Overall, for modern wind turbines with availabilities around 97%, ELFAV is typically 

around 95%-96% because of the disproportionately large energy production loss during 

unscheduled maintenance.  To be conservative, a value of 95% is assumed here.  This 

value is larger than the 94% quoted by Jones.  However, there is little information 

available concerning the types of turbines in Jones’s study.  Presumably, the turbines in 

the study encompass a range of ages.  In general, the more modern a turbine is, the better 

its availability, and so in the future one may expect better availabilities for wind farms 

than the data in Jones’s study indicates.  Regardless of the actual value estimated for the 

availability, there is likely some uncertainty in this estimate.  A value of 1% for the 

uncertainty in the expected value of the availability is reasonable, given the range of 

values quoted for the expected availability.   

Additional uncertainty arises due to the variability of yearly availability values, seen 

in the data provided by Jones in Figure 16.  That is, there is a potentially large variation 

in the availability from year to year, and so the lifetime availability of a wind farm may 

not equal the expected value of the availability.  Thus, there is additional uncertainty in 

the estimate of the availability.  The Monte Carlo simulation above indicated that the 
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uncertainty due to this variability is approximately 1% as well.  These two distinct 

uncertainties for the availability can then be combined using the RSS technique to give an 

overall availability uncertainty of 1.5%.     

ELFAV δELFAV 
95.0% 1.5% 

 

5.3 Fouling Losses and Uncertainty 

Ice, dirt, and insects can attach to the surfaces of wind turbine blades, reducing the 

aerodynamic performance of the blades, and thereby reducing the power output and AEP 

of a turbine.  In the northeast United States, icing is an especially important factor due to 

the cold winters.  Moreover, along with reducing the power output of a wind turbine, 

icing can cause a complete loss of production, overloading, and fatigue [80].  Anecdotal 

evidence from the Searsburg, Vermont wind farm indicates icing losses reducing AEP by 

between 2-6% [81].  The evaluation of the proposed East Haven Wind Farm in Vermont 

estimates an 8% reduction in AEP due to fouling (which includes icing), while the 

evaluation of Sheffield Wind Farm in Vermont estimates a 3% reduction due to icing 

[81],[82].  The degree to which fouling decreases AEP depends on a number of factors 

including: the frequency of blade cleaning, the amount of rain at a site, the likely amount 

of ice accumulation at a site, the ice mitigation efforts, the particular airfoil used in the 

turbine blades, and more.  Moreover, the effect of fouling varies year-to-year depending 

on the weather.  Finally, fouling reduces the energy production in stall-controlled turbines 

more than pitch-controlled turbines.  Thus, the effect of fouling is highly site dependent 

and very uncertain. 
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The energy loss factor due to fouling is labeled ELFFOUL, and it is equal to the actual 

AEP divided by the AEP if no fouling occurs.  In the northeast United States, ELFFOUL is 

likely between 90-95% based on the Searsburg wind farm and the estimates for the two 

proposed Vermont wind farms, although it certainly could vary outside of this range.  

Based on this data, a reasonable uncertainty in the expected value of the fouling is 2%.   

This value of ELFFOUL obviously is not constant from year to year over the lifetime of 

the wind farm.  Like availability, there is probably a yearly fouling distribution with a 

large amount of spread.  Thus, there is variability in the fouling from year to year, which 

causes additional uncertainty in the estimate of the effect of fouling.  Some years fouling 

may decrease the AEP substantially, and other times not at all.  Unlike the availability, 

however, no empirical data are available with which to model the yearly availability 

distribution.  A conservative approach can be taken to approximate the fouling 

uncertainty.  This approach assumes a large amount of spread in the yearly fouling 

distribution, which is modeled by assuming a value of k=1.01 for the Weibull 

approximation.  For an expected value of ELFFOUL = 0.90, the uncertainty in the lifetime 

fouling is 2%.  The overall fouling uncertainty, ELFFOUL, can be found by combining the 

uncertainty of the expected value and the uncertainty due to yearly variability using the 

RSS method.  The result is a value for ELFFOUL of 3%. 

For sites in warmer climates, where icing occurrences are rare, the uncertainty is 

likely quite a bit smaller.  A value of ELFFOUL = 1% can be used, since the amount of 

bugs, dirt, and rain (and others) may still causes some variation in the value of ELFFOUL. 

Sites where icing is likely 
ELFFOUL δELFFOUL 

Site Dependent 3% 
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Sites where icing is unlikely 
ELFFOUL δELFFOUL 

Site Dependent 1% 
 

5.4 Array Losses and Uncertainty 

When multiple wind turbines are arrayed to form a wind farm, the wakes of upwind 

turbines can decrease the wind speed seen by downwind turbines.  This reduction in the 

wind speed seen by downwind turbines causes a reduction in power production.  

Therefore, on average, a wind farm with N turbines at a certain site produces less energy 

than a single turbine at that site, multiplied by N.  Array losses can be estimated using 

wake models.  This estimate is necessary whenever a wind farm is being considered.  

Software packages such as WindPro or WindFarmer are used for estimating the array 

losses at a wind farm.    

The reduction in AEP depends on a number of factors, including the wind farm 

layout, the turbine spacing, the distribution of wind directions, the wind speed, and more.  

The magnitude of array losses is therefore highly site dependent, and uncertain.  The 

energy loss factor due to array losses is labeled ELFARRAY, and it is equal to the actual 

AEP divided by the AEP if no array losses occur.  ELFARRAY is often referred to as the 

“array efficiency.”  For a single turbine, ELFARRAY is 100%.   

Uncertainty in the array losses is due to many possible sources of error.  Some of 

these are:  

• Wake model error.  The wake model used to estimate the array losses may not be 

accurate. 

• Incorrect estimation of the wind direction probability distribution.  The measured 

wind direction distribution may differ from the long-term wind direction 
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distribution.  This could lead to errors in the estimated array losses.  This is an 

error due to an unknown bias. 

• Inter-annual wind direction variability.  Even if the long-term wind direction 

distribution is correctly estimated, the wind direction distribution may vary from 

year to year.  This is a random error. 

• Wind speed estimation error and wind speed inter-annual variability.  The wind 

speed affects the wake losses as well, although it is likely a relatively small effect.  

Errors in the estimation of the wind speed, as well as the natural variability in the 

wind speed can potentially lead to errors in the estimation of the array losses. 

 

Unfortunately, it is not possible to provide a specific value for the array loss 

uncertainty, ELFARRAY.  It is far too site dependent and layout dependent.  For example, a 

uniformly spaced, square grid wind farm (e.g., 5x5) in flat, uniform terrain is likely to 

have a small array loss uncertainty.  Even if the wind direction distribution is completely 

misestimated, the resulting error is fairly small.  The uncertainty would therefore be quite 

small, perhaps on the order of 1%.  On the other extreme, a wind farm comprised of a 

single row of turbines could have a very large array loss uncertainty.  If the wind 

direction distribution is misestimated, this could have a very large effect on the 

magnitude of the array losses.  The uncertainty in the estimate of the array losses would 

then be very large, perhaps even on the order of 8-10%.   

One method to obtain a “ballpark” estimate of the array loss uncertainty is a 

bracketing method.  First, the wake model program is run with the best estimate of the 

wind speed and direction distribution.  Next, the program can be rerun using synthesized 
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wind direction data.  The program can be run once when the wind direction comes 100% 

of the time from the direction corresponding to maximum array losses, and once from the 

direction of minimum array losses.  In this way, the best-case and worst-case scenarios 

are identified.  This would provide a maximum possible range of array loss values.  The 

uncertainty is certainly less than this range, but this method at least provides a means of 

bracketing the uncertainty.   

ELFARRAY δELFARRAY 
Site Dependent Site Dependent 

 

5.5 Combination of Energy Losses and Uncertainties 

The three energy loss factors each reduce the energy production of a turbine or wind 

farm linearly.  Thus, the overall energy loss, ELF, is simply the product of the three 

individual energy loss factors, as shown in Eq. 32. 

ARRAYFOULAV ELFELFELFELF ⋅⋅=   Eq. 32

The overall energy loss factor uncertainty, δELF, can be determined using the RSS 

method to combine the uncertainty values of the three individual energy loss factors, as 

shown in Eq. 33.  The sensitivity factor for each uncertainty source is equal to one.   

( ) ( ) ( )222
ARRAYFOULAV ELFELFELFELF δδδδ ++=   Eq. 33

5.6 Example Calculation of ELF and δELF 

For this example, it is assumed that: 

• ELFAV = 95%, δELFAV = 1.5%. 

• ELFFOUL = 92%, δELFFOUL = 3%.  The site is likely to experience icing. 

• ELFARRAY = 90%, δELFARRAY = 2%. 
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The overall energy loss factor, ELF, is found using Eq. 32: 

%7.78787.0
90.0*92.0*95.0

==
=

⋅⋅= ARRAYFOULAV ELFELFELFELF
 

The overall energy loss factor uncertainty, δELF, is found using Eq. 33: 

( ) ( ) ( )
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6.0 Combining Uncertainty – The Capacity Factor Uncertainty 

Once the wind resource at a site is determined for each turbine location (U,¯ LT_HUB, 

cLT_HUB, kLT_HUB), it is combined with a selected power curve and the energy losses (ELF) 

to yield an estimate of the energy production.  This process is depicted graphically in 

Figure 18.  The yellow boxes represent processes or calculations, and the blue 

parallelograms represent sources of data. 
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Figure 18 – Flow Chart of the Site Assessment Process 

The uncertainty in the wind resource (δU, δc, δk), the uncertainty in the power 

production (δP), and the uncertainty of the energy loss factor (δELF) contribute to an 

overall uncertainty in the energy production. 



 128

Often, it is more convenient to use the “Capacity Factor” as a measure of energy 

production.  The capacity factor is simply equal to the average turbine power output, 

PW,¯ , divided by the rated turbine power output, PR, and it is a non-dimensional quantity.  

The capacity factor is labeled CF.  The relationships between CF, AEP, and PW,¯  are 

shown in Eq. 34.  CF is used exclusively as a measure of energy production for the rest of 

this Section.  It must be emphasized that the goal of site assessment is not maximizing 

CF [83].  Minimizing the cost of energy is generally the goal of site assessment, and CF 

is one component of the cost of energy.  Instead, CF is a useful metric for representing 

the energy production of a site because it is non-dimensional. 

( )hoursPAEPPPCF WRW 8766,/ ⋅==   Eq. 34

This Section reviews: 

• How the wind resource, the power curve, and the overall reduction in the energy 

production are combined to estimate CF. 

• A new method to determine the capacity factor uncertainty, δCF. 

 

In general, this process cannot be performed analytically, and so a program that uses 

numerical integration or a simplified summation method must be used to determine the 

capacity factor and its uncertainty. 

6.1 Method for Estimating the Capacity Factor 

The capacity factor, CF, can be calculated using cLT_HUB and kLT_HUB along with a 

wind turbine power curve, PW(U), and the energy losses, ELF, as shown in Eq. 35 and 

Eq. 36.  Note, in all the equations in this Section, cLT_HUB and kLT_HUB are simply labeled c 
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and k.  When there are multiple turbines in a wind farm, the hub height estimate of the 

Weibull parameters may be different for each turbine.   

( )ELFPkcfCF WIDEAL ,,,=   Eq. 35

The actual functional dependence can be found by integrating the product of the wind 

speed distribution and the power curve over all values of wind speed, U, and then 

multiplying by the energy losses, and dividing by the rated power.  This can be done for 

each turbine in the wind farm when there are multiple turbines.  The capacity factor for 

the entire wind farm is simply the average of the CF values for each turbine.  The result 

when using a Weibull wind speed distribution, with probability density function p(U), is 

shown in Eq. 36 [21]. 
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The integral in Eq. 36 can be approximated by numerical integration.  RERL uses a 

Simpson’s method integration scheme in Matlab.  A simplified version of a trapezoid 

scheme is shown in Eq. 37, in which NB speed bins (often 25 of them) are utilized, and Uj 

is the wind speed for the jth bin. 
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  Eq. 37

The IEC standards specify a similar, but simplified formula that uses a Rayleigh 

distribution instead of a Weibull distribution [13].   
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6.2 Method for Estimating Capacity Factor Uncertainty 

While the uncertainties δc, δk, δP, and δELF are known, the non-linear dependence of 

CF on k and c makes the calculation of the total uncertainty of CF, δCF, fairly 

complicated.  The general equation for the uncertainty of CF is given in Eq. 38. 
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This is derived from the general uncertainty formula for fractional uncertainties, 

shown in Eq. 11.  δc, δk, δP, and δELF are the fractional standard uncertainties, and some 

example values are given in Sections 3.7, 4.4, and 5.6.   

The terms multiplying δc and δk in Eq. 38 are the sensitivity factors for c and k.  Like 

the uncertainties, the sensitivity factors are non-dimensional.  The sensitivity factors for c 

and k are labeled SFCF,c and SFCF,k, respectively.  The sensitivity factors for δP and δELF 

are 1, as expected.  In general, the sensitivity factors may be positive or negative to 

indicate if a change in the individual variable causes an increase or a decrease in CF.  The 

sign is not particularly important however, since the terms are then squared.  

To calculate the sensitivity factors for c and k, one needs to start with Eq. 36.  Using 

the Leibniz integration rule [84]: 
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After the derivatives are taken and some algebraic manipulation is carried out, the 

sensitivity factors can be written in the form: 
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These two equations are similar to the last expression in Eq. 36.  Again, a numerical 

integration scheme can be used to determine the values of the sensitivity factors.  Also, a 

similar summation approximation can be made for Eq. 41 and Eq. 42.  This 

approximation yields: 
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Thus, the sensitivity factors for c and k can be calculated using Eq. 43 and Eq. 44.  

This calculation is very similar to the calculation of CF using Eq. 37.  Once again, a more 

complicated numerical integration scheme, like the Simpson’s method used by RERL, 

could be used to solve Eq. 41 and Eq. 42. 

Finally, the total uncertainty of CF can be calculated using the general equation given 

in Eq. 38.  Again, δCF, δc, δk, δP, and δELF are all fractional uncertainties. 

( ) ( ) 222
,

2
, ELFPkSFcSFCF kCFcCF δδδδδ ++∗+∗=   Eq. 45
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In sum, CF is the estimated value for the capacity factor.  It is calculated using the 

long-term hub height estimates of c and k, the chosen power curve, and the energy losses.  

The uncertainty of this estimate is δCF, which is the fractional standard uncertainty of 

CF.   

The utility of this new method for estimating the uncertainty of the energy production 

in the site assessment process rests in the ability to explicitly calculate sensitivity factors 

using Eq. 41 and Eq. 42, rather than assuming values.  The method recommended in IEC 

61400-12, while equally valid, utilizes a bin method, which may be more cumbersome 

and less elegant than the method presented here [13].  Furthermore, the values of the 

sensitivity factors give insight into the contribution of the component uncertainty sources 

to the overall uncertainty. 

6.3 Summary of Method for Estimating CF and δCF 

The estimation of the capacity factor and its uncertainty is a multi-step process, and it 

is fairly complicated.  The steps below are meant to summarize the process of estimating 

these quantities, and guide the reader to the relevant Sections of this Chapter.  Section 6.4 

provides an example calculation to help clarify the process outlined here. 

1. Estimate cLT_HUB and kLT_HUB.  The process to estimate these values is outlined in 

Section 3.6.  This process combines the measured wind resource with an MCP 

algorithm, a shear extrapolation, and a topographic correction to produce the final 

long-term, hub height estimates of the Weibull parameters at the site for each 

wind turbine.   

2. Estimate δc and δk.  Fourteen different uncertainty sources contribute to the 

overall uncertainty of the estimate of the long-term Weibull parameters at the hub 



 133

location of the turbine.  These uncertainty sources are the subject of Section 3.0.  

Sections 3.1-3.4 provide descriptions of each uncertainty source, as well as 

estimated values or ranges of estimated values.  They are then summarized in 

Section 3.5.  The individual uncertainty sources can then be combined using the 

process outlined in Section 3.6, which yields the desired parameters: δc and δk.  

An example calculation is provided in Section 3.7.   

3. Choose a wind turbine power curve.  If available, use a site-specific power curve 

provided by the manufacturer.  If this is not available, scale the power curve for 

the average density at the site using Eq. 30 

4. Estimate δP.  Three uncertainty sources, identified in Section 4.0, contribute to 

the overall uncertainty in the power curve and power production.  Section 4.1 

describes each of these uncertainty sources, and a summary is provided in Section 

4.3.  These uncertainty sources are easily combined using the RSS method to 

yield an estimate of δP. 

5. Estimate the value of the three energy loss factors.  Approximate values for the 

energy loss factors or guidelines for choosing the values are given in Section 5.0.  

The three energy loss factors can then be combined into an overall energy loss 

factor, ELF, using Eq. 32. 

6. Estimate the energy loss factor uncertainty, δELF.  This can be calculated using 

the recommended values for the individual energy loss factor uncertainties, and 

Eq. 33.  

7. Estimate the capacity factor, CF, for the wind farm.  This is calculated using Eq. 

36, and it depends on cLT_HUB, kLT_HUB, the chosen power curve, and ELF.   
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8. Estimate SFCF,c and SFCF,k.  The sensitivity factors for c and k can be calculated 

using Eq. 41 and Eq. 42. 

9. Estimate δCF.  Using the results of Steps 1-8, δCF can be estimated using Eq. 45. 

6.4 Example calculation of CF and δCF 

An example calculation helps to clarify the process, as it can be quite complicated.  

Example values of δc, δk, δP, ELF, and δELF are calculated in Sections 3.7, 4.4, and 5.6.  

Thus, Steps 2, 4, 5, and 6 from Section 6.3 above have already been performed.  This 

calculation is for a single wind turbine.  These values are again shown in the table below. 

δc δk δP δELF ELF 
9.3% 9.1% 10.5% 3.9% 78.7% 

 

The remaining steps from Section 6.3 needed to calculate CF and δCF are given 

below. 

1. For this example, it is assumed that cLT_HUB = 9 m/s, and kLT_HUB = 2.5. 

3.  A GE 1.5 MW wind turbine power curve is used for this example.  This power 

curve is shown below in Figure 19.  It is assumed that the power curve does not 

need to be adjusted for the specific site. 
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Figure 19 – GE 1.5 MW Power Curve 

7. The capacity factor is calculated using Eq. 36.  An RERL program that uses 

Simpson’s Rule for the numerical integration is used.  The result is a value of 

CF=33.2%.  A simplified version of Eq. 36 is given in Eq. 37, and this can also be 

used to calculate CF. 

8. The sensitivity factors are calculated using Eq. 41 and Eq. 42.  This calculation 

depends on the value of CF, as well as the power curve, ELF, cLT_HUB, and 

kLT_HUB.  The result is values of SFCF,c = 1.85 and SFCF,k = 0.07.  Once again, an 

RERL program that uses a numerical integration scheme is used.  A simplified 

calculation can be made using Eq. 43 and Eq. 44. 

9. The values of the uncertainty and sensitivity factor for each of the parameters that 

contribute to δCF are shown in the table below. 
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Parameter c k PW ELF 
Uncertainty (%) 9.3% 9.1% 10.5% 3.9% 
Sensitivity Factor 1.85 0.07 1.0 1.0 
 

The overall capacity factor uncertainty, δCF, is calculated using Eq. 45, and is 

shown below.   
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6.5 Discussion of the Example Calculation 

Several important observations arise from this example calculation. 

6.5.1 The Calculation of CF 

The value of CF is 0.331 (i.e., 33.1%).  This value is a reasonable value of the 

capacity factor at a site with a good wind resource.  In general, capacity factors greater 

than 30% are promising sites.  The value of CF is dependent on the value of both c and k.  

This dependency is illustrated in Figure 20, which shows the value of the capacity factor 

for ranges of values of c and k, using the same power curve and ELF value as the 

example.  

Two major trends can be seen.  First, the capacity factor increases as c increases.  

This comes as no surprise, as the value of c is directly proportional to the mean wind 

speed, which is by far the most important parameter in assessing a site and estimating 

energy production.  Second, CF tends to increase as k increases, except when c is very 

small.  As k increases, the Weibull distribution becomes less spread out and therefore 
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more concentrated about its expected value.  At very low values of c, this means that the 

distribution is concentrated about very low values of the wind speed, and so the turbine is 

producing very little power, even when it is above the cut-in wind speed.  But, for 

moderate to high values of c, a high k value results in the wind speed being above the cut-

in value for a very high percentage of the time, and therefore a high capacity factor.  
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Figure 20 – Capacity Factor for Various Values of c and k 

6.5.2 The Calculation of δCF 

The uncertainty in CF, δCF, is 20.6%.  Once again, this is the fractional standard 

uncertainty.  To obtain the absolute standard uncertainty, δCF is multiplied by CF.  The 

result is an absolute standard uncertainty of 0.07.  Thus, the estimate of CF is: 

07.0331.0 ±=CF . 
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The magnitude of δCF depends predominantly on the value of δc.  In fact, if δk, δP, 

and ELF are all 0%, the uncertainty in CF is 17.2%.  This is due to the large magnitude of 

SFCF,c.  Thus, reducing the uncertainty in c provides the best opportunity for reducing the 

overall capacity factor uncertainty. 

6.5.3 The Sensitivity Factor SFCF,c 

The sensitivity factor for c is 1.85.  This is lower than is generally assumed.  It is 

sometimes assumed that a percentage increase in c (or the mean wind speed) causes 

between 2 and 3 times the percentage increase in CF, i.e., a sensitivity factor between 2 

and 3 [57].  However, this is a gross oversimplification, and the results indicate that this 

assumption could lead to large errors.  For example, if one assumes that SFCF,c = 2.3 (a 

common value), then δCF would be 24.2% instead of 20.6%.  This could mean the 

difference between an acceptable and unacceptable risk level for a potential wind energy 

venture.   

In actuality, the sensitivity factor for c is highly dependent on the value of c.  SFCF,c 

decreases as c increases.  Furthermore, SFCF,c is dependent on the value of k.  SFCF,c 

increases as k increases.  The dependence of SFCF,c on c and k (for this example) is shown 

below in Figure 21.  The plot indicates SFCF,c approximately decreases proportionally to 

the square of c.  
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Figure 21 – Sensitivity Factor for c 

Figure 22 is useful in understanding the behavior of the sensitivity factors.  It shows 

five different Weibull distributions, for various values of c and k, including the values 

used in this example.  It also shows the power curve used in this example.  In the case of 

SFCF,c, Figure 22 shows that as c increases, the wind speed is above the rated wind speed 

more and more frequently.  Therefore any error in the estimation of c affects the value of 

CF less, since the turbine produces constant power above rated wind speed, regardless of 

the actual wind speed.   
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Figure 22 – Various Weibull Distributions and Power Curve 

SFCF,c also increases as k increases as shown in Figure 21.  As k increases, the 

Weibull distribution becomes less spread out, resulting in the wind speed being close to 

the mean value more frequently.  The effect of the value of k on the Weibull distribution 

is shown again in Figure 22.  The result is that for a given value of c (for example 

compare the two plots for c=6 m/s in Figure 22), a higher value of k results in the wind 

speed being less than the rated wind speed more often, and therefore the capacity factor is 

more dependent on the value of c, and so SFCF,c is larger (as stated above, the more often 

the wind speed is above the rated value, the less the value of SFCF,c).   

The common assumption that SFCF,c is between 2 and 3 is only valid for values of c 

between approximately 6 m/s and 8 m/s.  Thus, in practice, a value of the sensitivity 

factor should never be assumed.  Instead, a calculation similar to this example calculation 
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should be carried out, using the appropriate power curve, wind resource, and energy 

losses. 

6.5.4 The Sensitivity Factor SFCF,k 

In this example, SFCF,k is fairly small relative to the other sensitivity factors, 

indicating that CF has a weak dependence on k.  For example, a 10% increase in k would 

only change CF by 0.7%.  This is not a surprising result, as generally the shape of the 

wind speed distribution is considered to be much less important for CF estimates than the 

mean wind speed value (or c).  However, SFCF,k is also highly dependent on the value of 

both c and k.  Figure 23 shows this dependence for this example.  Several important 

observations can be made.   

First, for moderate values of c near 8-9 m/s, SFCF,k is very close to zero.  At these 

conditions, the wind speed tends to be above the cut-in wind speed, and below rated 

conditions most of the time, regardless of the value of k, and therefore regardless of how 

spread out the wind speed distribution is.  Thus, CF is nearly independent of the value of 

k for these values of c.   

Second, for small values of c, SFCF,k is negative, and so increasing k when c is small 

causes CF to decrease.  This effect can be explained using Figure 22, which shows two 

Weibull functions with values of c=6 m/s (the red and the blue plots).  For these two 

plots, when k is small (k=1.5) the wind speed distribution is very spread out, and so the 

wind blows at higher wind speeds (greater than 8 m/s) much more frequently than when 

k=3.5 and the distribution has much less spread.  Third, for large values of c, SFCF,k is 

positive.  Thus, increasing k when c is large causes CF to increase.  In this situation, 

when c is large, a higher value of k, and so less spread in the distribution, results in the 



 142

wind speed being greater than the cut-in wind speed, and less than the cut-out wind 

speed, nearly all the time.  On the other hand, a small value of k results in frequent wind 

speeds below cut-in or greater than cut-out.   
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Figure 23 – Sensitivity Factor for k 

6.5.5 The Weibull Shape Factor, k 

The value of k is often assumed to be approximately 2, although it can vary widely, 

with values that may be as low as 1.5 or as high as 3.5 at some sites.  For low values of k, 

the sensitivity factor is much larger than it would be for high values of k.  Furthermore, 

the sensitivity factor changes more rapidly for low values of k.  This result has important 

practical implications.  For this example, if one assumes that k is equal to 2, but in fact it 

is equal to 1.5, the capacity factor would be calculated as 0.325 or 0.311, respectively.  

This may seem like a small difference, but it corresponds to a 4% change in AEP, which 
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can make the difference between a successful venture and a failure.  Thus, assuming a 

value of k has dangerous consequences, as it could lead to a significantly incorrect 

estimation of CF (or AEP).  This point further reinforces the utility of using the two 

parameter Weibull distribution to approximate the wind speed distribution rather than the 

one parameter Rayleigh distribution (the Rayleigh distribution is equivalent to the 

Weibull with a value of k=2).  By estimating a value of k, and therefore taking the shape 

of the wind speed probability distribution into account in AEP estimation, one can avoid 

the significant errors that may arise when k is assumed to be a certain value. 

7.0 Conclusions 

Wind energy site assessment is a complex multi-step process, with a high degree of 

uncertainty.  This Chapter seeks to present a comprehensive means for understanding and 

estimating uncertainties in this process.  Important conclusions and results include: 

• Fourteen sources of uncertainty are identified that arise during the wind resource 

assessment process.  Estimates of the bias due to the sources or error are also 

made.  A method for estimating the long-term wind resource is presented.  Also, a 

means of combining the uncertainties and biases is shown, which takes into 

account the magnification of the measurement uncertainty.   

• Significant uncertainty arises when assessing the wind resource at a site.  In an 

example calculation with reasonable values, the uncertainty of U,¯ LT_HUB and 

cLT_HUB is 9.3%, and the long-term Weibull shape parameter, kLT_HUB, has an 

uncertainty of 9.1%. 
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• Wind measurement devices capable of measuring at hub height offer an 

opportunity to significantly reduce wind resource assessment uncertainty.  These 

devices, discussed in Chapter II, Section 2.0, eliminate errors due to shear model 

uncertainty, and tower/boom effects.  They also reduce the measurement 

uncertainty sensitivity factor to 1.  In fact, a LIDAR or SODAR with 5% 

measurement uncertainty would still reduce the uncertainty in U,¯ LT_HUB and 

cLT_HUB to 7.6%, and the overall uncertainty in the capacity factor, δCF, to 18%. 

Reliable LIDAR or SODAR measurements should be used for site assessment 

whenever possible. 

• The power production from a wind turbine is also uncertain for a variety of 

reasons.  The estimate of the total power production uncertainty is 10.5% in the 

example calculation. 

• Three energy loss factors are identified which directly reduce the energy 

production of a turbine or wind farm.  In the example calculation, these terms 

cause a total reduction in the energy production of 21.3%.  The uncertainty of 

these terms in the example calculation is 3.9%. 

• A means of combining the estimated long-term wind resource, the power curve, 

and the energy losses in order to estimate the capacity factor is presented.  By 

using the 2-parameter Weibull distribution to represent the long-term wind 

resource, the shape of the wind speed distribution can be taken into account in the 

calculations of CF.  This yields a more accurate estimate of CF, as the value of 

the Weibull shape parameter k can noticeably affect the value of CF.  In the 

example calculation, the calculated capacity factor is 33.1%. 
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• A means of combining wind resource uncertainty, power production uncertainty, 

and energy loss uncertainty into an estimate of the capacity factor (or AEP) 

uncertainty is presented.  This method relies on a Weibull wind speed distribution, 

and employs sensitivity factors.  Equations to calculate the sensitivity factors are 

given, as well as a final equation that yields the CF uncertainty.  This method 

provides an analytical means for calculating the sensitivity factors, as opposed to 

assuming their value, which can lead to significant errors.  An example 

calculation yields an estimate of the CF uncertainty at 20.6%.  The new methods 

for uncertainty analysis presented in this Chapter are in contrast to those 

recommended in IEC 61400-12, which recommend a bin method [13].  Neither 

approach is inherently more correct than the other; they are instead different 

approaches to the same problem.  In general, it is unlikely that they produce 

significantly different results.  The methods presented in this Chapter are 

potentially more easily implemented, as a single equation is needed to calculate 

each sensitivity factor, which can be less cumbersome than dealing with many 

bins.   
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CHAPTER IV  

OBJECTIVE DECISION MAKING IN SITE ASSESSMENT 

1.0 Introduction 

Traditionally, wind energy site assessment is performed using meteorological towers 

(met towers) equipped with cup anemometers and wind vanes.  This process is described 

in detail in Chapter I, Section 1.1.  In order to estimate the long-term wind resource at a 

site, the measured wind data are often incorporated into a process called “Measure-

Correlate-Predict” (MCP).  MCP is also described in detail in Chapter I, Section 1.1 and 

Chapter II, Section 5.0.  A full year of data is often measured on-site to reduce the 

uncertainty in the estimate of the long-term wind resource [52].   

At many sites, however, where the wind resource is either very good or very bad, a 

decision to cease measurement and either build or not build a wind farm may be possible 

well before a full year of measurement has taken place, despite the larger uncertainty due 

to the shorter measurement period.  The MCP process can be executed with any length of 

measured data, not just one year, and so an estimate of the long-term wind resource, and 

therefore an evaluation of the site, can be made after any length of measurement 

This Chapter describes the development of an approach for making objective 

decisions for wind resource monitoring.  The basic question that is addressed by this 

research is: When and how can one decide to stop measuring the wind resource at a site 

and either build or not build a wind farm?  The goal of this approach is to accelerate the 

site assessment process, saving time and money in the process. 
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2.0 Motivation 

This research develops an objective decision making framework that can be used to 

reduce the necessary measurement period in the site assessment process.  There are 

several reasons why this is desirable.   

First, monitoring the wind resource on-site is an expensive process.  The installation 

of a met tower requires a crew of several people at least a full day to both raise and lower 

the met tower.  Most met towers are approximately 40 m to 60 m tall, and towers of this 

height (including labor and sensors) cost approximately $20,000 [3],[20].  Taller towers, 

with heights of 80 m and greater, are significantly more expensive than traditional met 

towers (at least $100,000).  Moreover, it is sometimes necessary to install multiple towers 

at a large site.  Furthermore, the cost of data collection, processing, and reporting can also 

be quite expensive.  Overall, a standard wind resource monitoring campaign at a site 

using a single met tower costs approximately $30,000.   

Second, along with the potentially lengthy permitting and construction phase of a 

wind energy project, the measurement of the wind resource adds more time to the overall 

process of wind energy development.  The uncertain nature of federal and state subsidies 

in the United States, along with unpredictable turbine availability, encourages rapid 

development of wind energy projects, which is potentially in direct conflict with a 

lengthy wind resource measurement time.   

Lastly, wind energy consulting firms or state-wide wind energy assessment programs 

often have multiple candidate sites for site assessment but limited equipment, and so 

there is a strong motivation for quick measurement campaigns.  Essentially, there is an 
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opportunity cost to measuring at a given site, as the resources committed to that site could 

potentially be better served at another location. 

Overall, there are compelling reasons to accelerate the wind resource measurement 

process, even if there is an associated increase in uncertainty.  Furthermore, ground-based 

devices, such as SODAR and LIDAR, are especially well suited to rapid site assessment 

campaigns.   These devices are described in detail in Chapter II, Section 2.0.  One notable 

feature of these devices is that they are portable and easy to install, especially when 

compared to met towers.  Their portability makes the process of stopping measurement at 

one location and commencing at another significantly easier than if met towers are being 

employed.   

While the methods developed in this Chapter do not presuppose the use of a ground-

based device, their portability makes them the logical choice in practice.  Portable met 

towers (also called “jack-up” towers) that are quickly installed could also be used for this 

application.  Nonetheless, this approach can be applied when standard met towers are 

used for the wind resource measurement.  However, the high fixed cost of using a met 

tower for wind resource measurement makes this approach less compelling than when 

ground-based devices are used.   

3.0 Objective Decision Making Framework 

This Section describes the decision framework used for this analysis.  This 

description provides an overview of the process, and the details of the actual data analysis 

are provided in the next Section.  The framework assumes that while the wind resource is 

monitored at a site, at any point in the process one is faced with a decision consisting of 

three choices: 
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1. Stop on-site measuring and build a wind farm. 

2. Stop on-site measuring and do not build a wind farm. 

3. Continue on-site measuring and decide at a later point. 

 

This is the basic set of options available, which clearly depend on the estimate of the 

wind resource and the relevant economic parameters for the particular site.  The actual 

decision made is based on maximizing some utility function.  Economic profit is one 

such option for evaluating the options, and a version of it, net present value (NPV), is 

used in this analysis.  The basic decision framework can be summarized in the following 

steps: 

1. Measure the wind resource on-site for a limited number of continuous days, NDays 

(i.e., significantly less than 365 days). 

2. Use this limited on-site measured data set in an MCP algorithm, in conjunction 

with long-term data from a nearby reference met tower.  This yields an estimate 

of the long-term mean wind speed and also the uncertainty in this estimate at the 

site.  The estimate of the long-term mean wind speed at the site is used to 

characterize the wind resource throughout this Chapter, and is labeled ULT.  As 

stated above, MCP can be executed with any length of measured on-site data, 

including lengths less than one year.  While the full seasonal variation in the wind 

resource is not captured in the measured data in these cases, the reference site data 

set does contain data for the entire season, as well as several more years of data.  

Thus, MCP is utilized to account for variations in the wind resource at time scales 

longer than the measured data length. 
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3. Evaluate the three choices. 

a. For the first choice, stop measuring on-site and build the wind farm: the 

annual energy production and its uncertainty are first estimated from ULT, 

and then the economic success of the project is evaluated.  Because the 

energy production is an uncertain quantity, it is actually the expected value 

of the economic success that is calculated. 

b. For the second choice, stop measuring on-site and do not build the wind 

farm: the cost of the wind resource monitoring is the only factor 

contributing to the economic evaluation. 

c. For the third choice, continue to measure: all future possible choices are 

considered, and so in essence this process repeats itself and begins again at 

Step 1. 

 

The process is therefore recursive, as the “continue to measure” choice considers 

future repetitions of the process.  The process terminates at the end of one year of 

measurement. 

3.1 Example Decision Tree 

An example helps to clarify this process.  The example assumes that the wind 

resource can be continuously measured over the course of one year, and reported twice: 

after 180 days, and then at the end of one year.  A visualization of this sample decision 

tree is shown below in Figure 24. 
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Figure 24 – Sample Decision Tree  

When 180 days of measurement have passed, the first on-site measurement period is 

complete, and the data are reported.  An estimate is made of the long-term mean wind 

speed using the measured data and MCP, which is labeled ULT_1.  ULT_1 is an uncertain 

quantity, and in this Chapter it is assumed to be normally distributed [85].  Thus, ULT_1 is 

a random variable, characterized by a mean, μ(ULT_1), and standard deviation, σ(ULT_1), 

and the probability density function (pdf) is p(ULT_1).  Next, the long-term annual 

capacity factor is estimated, as well as the uncertainty of the long-term annual capacity 

factor.  The estimated long-term annual capacity factor is simply the estimated long-term 

annual energy production, appropriately normalized by the number of hours in a year and 

the wind turbine rated power.  Like ULT_1, the long-term annual capacity factor, CFLT_1, is 

assumed to be normally distributed, with probability density function p(CFLT_1). 

At this stage, the first decision point is reached, and a decision can be made.  The 

expected value of the first two choices, building or not building the wind farm after the 

first measurement period of 180 days, can then be calculated directly, as functions of 

CFLT_1 and the relevant economic parameters.  The formula for calculating the expected 

value of building the wind farm, E[NPV(Build)]1 is shown in Eq. 46.   

( )[ ] ( ) ( )∫ ⋅⋅=
1

0
1_1_1_1 LTLTLT dCFCFNPVCFpBuildNPVE   Eq. 46 

The subscript “1” indicates that this calculation takes place for one measurement 

period.  The details of this calculation, such as the functional dependence of NPV on 
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CFLT_1, are described later.  The expected value of not building, E[NPV(Not_Build)]1 is 

simply equal to the net present value of the total cost of measurement up to the end of the 

first measurement period.  A specific value for this cost is given later. 

To calculate the third choice, continue measuring, all future outcomes must be 

considered and evaluated as well.  There is not the luxury of actually measuring; instead, 

the probability of each possible outcome is calculated as well as the expected value of 

each outcome, and these are combined to yield the expected value of measuring.   Thus, a 

second hypothetical measurement period is considered (but not yet measured), which, 

including the first measurement period, would result in a full year of measured data.  The 

full year of measured data could then be used, along with MCP, to estimate the long-term 

mean wind speed.  The second estimate of the long-term mean wind speed would be a 

normally distributed random variable, ULT_2, characterized by a mean, μ(ULT_2), and 

standard deviation, σ(ULT_2).  The probability of a given mean of the pdf of U2, μ(ULT_2), 

depends on the pdf of ULT_1,  p(ULT_1).  That is, given p(ULT_1), the probability of any 

value of μ(ULT_2) can be calculated.  This probability is labeled P(μ(ULT_2) | p(ULT_1)).  In 

practice, the probability of μ(ULT_2) occurring in some finite bin is calculated.  The 

specifics of this binning are discussed later. 

The uncertainty of ULT_2, σ(ULT_2), must also be considered, as it is needed to define 

the pdf of ULT_2.  A model for the behavior of future uncertainties can be used to estimate 

σ(ULT_2).  A description of the model used in this Chapter is given later.  Thus, each 

possible value of the mean of the pdf of ULT_2, μ(ULT_2), can be considered and the 

uncertainty modeled, with the resulting pdf being p(ULT_2).  The probability of a certain 

p(ULT_2) occurring is P(μ(ULT_2) | p(ULT_1)).   
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Then, for any given p(ULT_2), the pdf of the capacity factor can be calculated, which is 

p(CFLT_2).  The second decision point has now been reached, and since this is the 

terminal decision, only the first two choices are possible: either build or do not build the 

wind farm.  Thus, the expected values of building and not building are calculated.  The 

expected value of building after the second measurement period, E[NPV(Build)]2, is 

calculated using Eq. 47.   

( )[ ] ( ) ( )∫ ⋅⋅=
1

0
2_2_2_2 LTLTLT dCFCFNPVCFpBuildNPVE  Eq. 47

Once again, the expected value of not building after the second measurement period, 

E[NPV(Not_Build)]2, is simply equal to the net present value of the total cost of 

measurement up to the end of the second measurement period.  For any given μ(ULT_2), 

and so any given p(ULT_2) and p(CFLT_2), the decision to build or not build the wind farm 

depends on which choice has the higher E[NPV].  This decision is based on the 

maximum E[NPV] for a given μ(ULT_2), and so it is labeled Max{E[NPV] | μ(ULT_2)}2.   

The purpose of considering these future choices is to determine the expected net 

present value of continuing to measure after the first measurement period is complete, 

E[NPV(Measure) | p(ULT_1)]1.  Thus, all the future choices can then be integrated using 

the probability of each possible outcome, P(μ(ULT_2) | p(ULT_1)), and the expected value of 

each outcome, Max{E[NPV] | μ(ULT_2)}, which allows for E[NPV(Measure) | p(ULT_1)]1 

to be calculated after the first measurement period, as shown in Eq. 48.  It is important to 

note that this value is dependent on p(ULT_1). 
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In this way, the expected value of the continue to measure, build, and not build 

choices after the first measurement period are calculated, and the choice with the 

maximum expected value can be chosen as the optimal strategy.   

If the choice with the largest expected value after the first measurement period is the 

continue measuring option in Figure 24, then the wind resource is measured for the rest 

of the year, and the entire year of measured wind data is used along with MCP to estimate 

the long-term mean wind speed.  New values of μ(ULT_2) and σ(ULT_2) are therefore 

estimated, yielding a new pdf for ULT_2, and also a new pdf for CFLT_2.  The second 

decision point has then been reached, which is a terminal decision, and so only the 

options to build or not build are considered.  Eq. 47 is once again used to determine 

E[NPV(Build)]2, and once again, the expected value of not building after the second 

measurement period, E[NPV(Not_Build)]2, is simply equal to the net present value of the 

total cost of measurement up to the end of the second measurement period.  The option 

with the larger expected value is then chosen.  

This basic decision-tree framework is used later in the actual data analysis, and can be 

expanded to include more measurement periods. 

4.0 Data Analysis 

This Section describes the details of the data analysis that is used to evaluate the 

decision making framework with actual wind speed data. 
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4.1 Data Sets Used 

Fifteen pairs of long-term data sets are used in this investigation.  Table 1 summarizes 

each of the data set pairs.  Each data set pair consists of two sites, located near each other, 

each with long-term periods of concurrent wind speed and direction data.  The concurrent 

data length for the sets ranges from three years to seventeen years.  These data sets come 

from locations all over the United States, including coastal and offshore sites.  

For each pair of sites, the site that is listed first in the table is used as the reference 

site.  The “Distance” column gives the distance between sites in kilometers.  In many 

cases, the distance is much larger than is desirable for the MCP process in practice.  

However, for the purpose of investigating the statistics of the predictions, the large 

distances between sites are not important. 

These data sets are comprised of either 10-minute or hourly wind speed data.  For 

many of the sites, two anemometers are positioned at each of the measurement heights.  

In these cases, for each 10-minute or hourly average, the higher of the two measured 

wind speeds from the anemometers is selected as the wind speed at that height, to combat 

the effects of tower shadow [68].  The data are also subjected to quality control tests to 

attempt to remove any data corrupted by icing or other issues [69].  Overall, there is 

reasonable confidence in the quality of the data.  Nonetheless, tower shadow effects and 

other obstructions are difficult to identify in many cases, and so there is still some 

potential for the data to be corrupted [86].    
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Data Set Name State/Region Distance Years of Good Data
Buoy 44013 NE
Buoy 44011 NE
Buoy 46005 NE
Buoy 46002 NE
Cornucopia WI

Rib Lake WI
Currie MN

Breckenridge MN
Currie MN

Montevideo MN
Hatfield MN
St. Killian MN

Buoy 44007 NE
Buoy 44005 NE
Buoy 44008 NE
Buoy 44013 NE

Buoy BUZM3 NE
Buoy IOSN3 NE

Buoy MDRM1 NE
Buoy MISM1 NE

Cedar IA
Red Oak IA

Estherville IA
Forest City IA

Sibley IA
Inwood IA

Sutherland IA
Radcliffe IA

Buoy 51001 Pacific
Buoy 51003 Pacific

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

365 km

390 km

180 km

253 km

90 km

35 km

87 km

231 km

178 km

62 km

219 km

100 km

66 km

186 km

497 km

6

3

3

8

5

7

17

14

15

17

5

4

5

3

14
 

Table 1 - Summary of Data Sets 

4.2 Measure-Correlate-Predict 

The estimation of the long-term mean wind speed from the measured wind speed data 

is accomplished using measure-correlate-predict.  As stated above, MCP can be utilized 

with any length of measured data, including data lengths less than one year.  The 

reference site data is utilized to account for variations in the wind speed at longer time 

scales than the length of measured data, such as seasonal and annual variations.   This 

investigation utilizes the “Variance Ratio” method [37].  This method is described in 



 157

detail in Chapter II, Section 5.0. Along with using MCP to predict the long-term mean 

wind speed, the long-term value of the Weibull shape parameter k is also estimated. 

The uncertainty in the MCP estimate of the long-term annual mean wind speed is 

calculated using the jackknife estimate of variance method [52].  This predicted 

uncertainty is the standard uncertainty (i.e., the standard deviation of the uncertainty), as 

the prediction is assumed to be normally distributed.  This method is an effective means 

of estimating the uncertainty of MCP predictions, on average.  The uncertainty in the 

Weibull k parameter is not considered as it generally has a negligible effect on the overall 

uncertainty [85]. 

The issue of uncertainty is complicated by the objective decision making framework.  

Future branches of the decision tree are calculated after each measurement, and the 

calculations in these future branches depend on the uncertainty in the long-term mean 

wind speed estimate, as described in the decision tree example above.  It is not 

appropriate to assume that the uncertainty in the estimated long-term mean wind speed is 

constant in all future branches, as the uncertainty in MCP prediction decreases with 

increased measurement periods [52].   

This situation is resolved as follows.  Figure 25 shows the average percentage 

uncertainty when estimating the long-term mean wind speed using MCP for the data sets 

used by Rogers et al. [52].  These data are labeled “Jackknife Data.” The data are 

modeled with a power law function, and the least square fit to the data that also passes 

through the first data point has an exponent of -0.33, and is also shown in Figure 25.   
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Figure 25 – Mean Wind Speed Uncertainty 

This power law function is used to model the decrease in uncertainty in future 

branches.  Obviously, the model is not appropriate for all situations, but it does provide a 

good representation of the average behavior of the uncertainty in future measurements.  

In function form, this fit is described using Eq. 49, where δU is the long-term annual 

mean wind speed uncertainty, N is the number of measured days, and C is a constant. 

33.0−⋅= NCUδ   Eq. 49 

Thus, the model has only one parameter, namely C.  When a single measurement is 

performed, and so there is only one estimate of the long-term mean wind speed 

uncertainty using the jackknife method, then C is determined exactly.  However, when 

two or more measurements are made, and so there are two or more estimates of the long-
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term mean wind speed uncertainty for different measurement lengths, then C is calculated 

to give the best least square fit to the data. 

4.3 Energy Production Estimate 

After the long-term annual mean wind speed is estimated, the annual energy 

production from a wind farm is calculated.  This analysis utilizes the capacity factor as a 

non-dimensional form of the annual energy production.  For this analysis, the power 

curve from a GE 1.5 MW turbine is used.  Also, it is assumed that 10% of the energy 

production is lost per year due to maintenance, dirt and icing, array losses, and other 

effects.  The capacity factor of the wind farm is then calculated as a function of the 

estimated long-term mean wind speed and k.  A larger long-term mean wind speed 

corresponds to a larger capacity factor.   

The uncertainty of the capacity factor is also calculated, and again it is assumed to be 

normally distributed.  First, an additional 7% uncertainty in the estimated long-term mean 

wind speed (on top of the MCP jackknife uncertainty) is assumed, due to measurement 

error, shear and topographic effects, and other factors, based on the research in Chapter 

III.  The sensitivity factor of the energy production to the mean wind speed uncertainty is 

then determined.  Next, an 8% power curve uncertainty and 4% uncertainty in the energy 

losses are assumed, again based on the research in Chapter III.  Finally, all of the 

respective uncertainties are combined to yield an overall capacity factor uncertainty using 

the methods developed in Chapter III.  
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4.4 Economic Evaluation 

The economics of not building the wind farm are easily evaluated, as they are simply 

a function of the monitoring costs and the number of days of measurement.  It is assumed 

that the monitoring cost is $100 per day of measurement (in accordance with the values 

given previously).  This cost model is most appropriate when a ground-based device is 

used to measure the wind resource.  Ground-based devices have minimal installation 

costs, and so the marginal cost of monitoring for another day is approximately equal to 

the average cost per day over the entire measurement period.  In contrast, a met tower has 

a high upfront cost due to the installation required, and so the marginal cost of measuring 

for another day is quite low relative to the average cost per day.  Thus, a cost model with 

a fixed cost per day of measurement is much more representative of a ground-based 

device measurement campaign.  A different type of cost model can be used when 

considering a met tower. 

After each measurement period, the monitoring costs must be paid, and these 

payments are discounted back to the day that measurement began to get the net present 

value (NPV).  The discount rate used is 8% per year.  Thus, if each measurement period 

is 10 days, then after 10 days, $1000 is paid.  The NPV of this payment is -$997.89.  If 

another 10 days are measured after that, another $1000 is paid at the end of that period 

(20 days total), and the NPV of that payment is -$995.79.  The total NPV of the 

monitoring costs is -$1993.69.  Whenever monitoring ceases, the total NPV of the 

monitoring costs is calculated based on the total measurement length, and the number of 

measurement periods. 
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The economic success of building the wind farm is evaluated using a cash flow 

method.  This method combines the revenue, expenses, loan obligations, taxes, and 

subsidies in each year of operation to yield an after-tax net cash flow, and it is described 

in greater detail in Chapter VII, Section 1.0.  In the first year of the cash flow sheet, the 

cash flow is negative due to the initial capital costs of constructing the wind farm.  In all 

later years, the cash flow is either positive or negative depending on the relative amount 

of revenue and subsidies compared to the loan payments and expenses.  The cash flow in 

each year is then discounted back to the day that the wind resource measurement 

commenced, to yield the net present value of the project.  The total NPV of building the 

wind farm is the sum of the NPV of the discounted cash flows and the NPV of the 

monitoring costs.  In this way, all choices are compared on an equal footing. 

4.4.1 Cash Flow Example 

A simple example helps to clarify the process.  Hypothetically, the wind resource is 

measured at a site for an entire year, and there are two measurement periods.  After both 

180 days and after 365 days, monitoring costs of $18,000 and $18,500 are paid, 

respectively.  The NPV of these costs is -$34,459.  The wind turbine is then built, with 

initial capital costs of $1,000,000 in the first year, paid immediately after monitoring 

ends, and net cash flow of $300,000 for the next 5 years.  These cash flows are shown in 

Figure 26.  The net present value of these cash flows, discounted back to the day that 

monitoring commenced (not construction) is $358,207.  The total NPV for the monitoring 

and turbine operation is therefore $323,748.   
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Figure 26 – Cash Flow Example 

To emphasize the advantage of building the wind farm rapidly, this same example is 

considered, except with the decision to build taking place after the first measurement 

period.  In this case, the total NPV of building the wind farm, including the monitoring 

costs, is $355,127.  This is $31,378 more than the previous example, and this increase in 

NPV is due both to a decrease in monitoring costs, and reduced discounting to the cash 

flow due to the accelerated installation of the turbines. 

4.4.2 Economic Assumptions 

To calculate the actual NPV of building the wind farm, after any measurement period, 

numerous economic assumptions are necessary.  The important assumptions are: 

• Five 1.5 MW turbines are installed, for a total capacity of 7.5 MW. 



 163

• A power purchase agreement for 5 cents per kWh is used. 

• The construction time is 1 year, and the project life is 20 years. 

• The capital costs of the turbines are $1,200 per kW installed, so the total capital 

costs are $9,000,000. 

• The yearly expenses (including O&M, leasing fees, etc) are $285,000.  

• A 60% debt, 40% equity mixture is assumed, with a 20 year loan and a 10% 

interest rate. 

• The PTC is 10 years at 1.8 cents per kWh. 

• Accelerated 5 year MACRS depreciation is used for the capital costs. 

• The total tax rate is 40%. 

• The inflation rate for all expenses and revenues is 1%. 

 

While many of these assumptions could have significantly different values, e.g., with 

inclusion of incentives that increase the value of the exported electricity, different 

borrowing costs, etc, the analysis is generally applicable for any set of assumptions. 

The economic evaluation is complicated by the debt repayment.  The ratio of the 

available cash for the loan payment and the actual loan payment is referred to as the “debt 

service coverage ratio,” or DSCR.  For capacity factors below a certain value, the 

revenue generated by the wind energy is insufficient to repay the loan obligation for a 

given year, and so the DSCR is less than 1.  Figure 27 shows the minimum DSCR for all 

the years of wind farm operation, and for the economic assumptions above, as a function 

of capacity factor.  The minimum DSCR is a linear function of capacity factor.  For 

capacity factors below approximately 25%, the minimum DSCR is less than 1.  In these 
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cases, the wind farm is unable to fulfill its loan obligations, and so defaults.  The actual 

consequences of defaulting on the loan are varied, and beyond the scope of this Chapter.  

This issue is handled as follows: for capacity factors greater than 25%, NPV is positive 

and also a linear function of capacity factor, as shown in Figure 27.  As capacity factor 

decreases from these larger values, it eventually reaches 25%.  At that point, for all 

capacity factors less than 25%, NPV is forced to the smaller value of either -$100,000 or 

the value obtained by extrapolating the linear NPV function to lower capacity factor 

values.  The result can be seen in Figure 27 as well, as there is a “notch” for capacity 

factors between approximately 21% and 25% where the NPV is forced to -$100,000.   
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Figure 27 – NPV of building and DSCR as a function of Capacity Factor 

It is worth noting that without this adjustment, the break even capacity factor 

calculated from the NPV line is 22%.  However, this is an incorrect result, as the 
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minimum DSCR at that point is only 0.8, and so the loan cannot be repaid.  Once again, 

the quantitative results of this analysis depend critically on the values used in the 

assumptions. 

This approach is clearly a significant simplification.  The value of -$100,000 is 

arbitrary, and so is the extrapolation of NPV values to lower capacity factors.  The goal is 

to create a sizable penalty for building the wind farm when the minimum DSCR is less 

than 1.  On the other hand, when the capacity factor is low enough that the minimum 

DSCR is less than 1, the wind farm would not be built anyway, and so the NPV of the 

decision is simply the NPV of the monitoring costs.  In this way, the actual values of 

NPV for DSCR values less than 1 are not particularly important, as long as they are low 

enough to ensure that the decision in these cases is not to build the wind farm. 

Lastly, because the capacity factor is an uncertain quantity, the expected value of the 

NPV, E[NPV], of building the wind farm must be calculated.  This is shown in Eq. 46 

above, and is repeated here in Eq. 50.  NPV(CF) is the function shown in Figure 27, and 

CF is the capacity factor.  p(CF) is the distribution of the capacity factor, which is 

assumed to be normal.  The limits of integration are necessary because of the definition 

on the capacity factor. 

( )[ ] ( ) ( )∫ ⋅⋅=
1

0

dCFCFNPVCFpBuildNPVE   Eq. 50 

4.5 Decision Model Parameters 

The parameters that define the objective decision making framework are defined 

below.  The model is qualitatively similar to the example decision tree shown in Figure 
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24, except with more measurement periods, and the exact economic parameters described 

above used to calculate the NPV of the various decisions. 

• The predicted long-term annual mean wind speed is categorized by 1 m/s bins 

between 4 m/s and 14 m/s (as opposed to a continuous distribution, which is used 

in the decision tree example above).  There are a total of 12 bins including the bin 

for values less than 4 m/s, and the bin for values greater than 14 m/s.  These 

extreme values are chosen to encompass the likely range of values at nearly any 

site.   

• There are 4 total measurement periods, each 90 days long.   

 

At the end of each measurement period, the three choices are evaluated, and one of 

them is selected.  The decision to build is more complicated than simply choosing it if it 

has the largest E[NPV].  Because of the risk associated with building a wind farm, a more 

conservative decision criterion is needed.  As stated previously, the capacity factor is an 

uncertain quantity, and so a range of values are possible.  A common method, which is 

used here, is to require that the minimum DSCR calculated with the 10th percentile 

capacity factor value is greater than 1 [14].  Thus, the decision to build a wind farm is 

only made if the expected NPV of building is larger than the other two choices, and if the 

minimum DCSR using the 10th percentile capacity factor value when building is greater 

than 1.  If one of these criteria is not met, then the decision is limited to the maximum 

expected NPV between the choices of not building the wind farm and continuing to 

measure. 
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4.6 Decision Space Example 

An example is useful to demonstrate the basic functioning of the framework.  The 

plot in Figure 28 shows an example decision space.  Essentially it shows what decision is 

made as a function of the predicted long-term mean wind speed and the number of 

measured days of data.  Figure 28 is created by assuming that the uncertainty behaves 

according to the data in Figure 25.  A few important observations about Figure 28 are: 

• For actual sites, the decision space would be qualitatively similar, but would 

differ due to different estimates of the uncertainty in the long-term mean wind 

speed.     

• As the measurement length increases, and so the uncertainty in the prediction of 

the long-term mean wind speed decreases, the boundaries narrow indicating that 

there is a smaller region in which the decision would be to continue measurement.  

Essentially, increased certainty in the estimate makes a decision more likely. 

• The actual values of the boundaries are also highly dependent on the economic 

parameters used in this analysis. 

• At the end of 1 year of measurement, a decision is always made, and so there is 

no longer any space occupied by the option to continue measurement. 

• The upper boundary between building and continuing to measure is fairly flat 

relative to the lower boundary.  This is likely due to the conservative DSCR 

requirement decision criteria.  
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Figure 28 – Decision Space for Example 

4.7 Data Set Analysis Procedure 

The 15 data sets are each analyzed using a recursive dynamic program that solves the 

decision tree using the actual wind data and MCP predictions.  The goal is to compare the 

objective decision making results to the results of using the traditional method of an 

entire year of measured data.  Also, because long-term target site data is available in this 

analysis, it is also possible to calculate the target site capacity factor based on the long-

term target site wind resource.  This is an estimate of the true capacity factor at the site, 

and it can be used to calculate the true decision that would be made if this target site data 

are available.  This true decision serves as a useful comparison, and the full target site 

wind resource enables the consequences of the various decisions to be calculated as well.  

The program functions as follows: 
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1. For each data set, N random starting points are selected in the target site data set, 

where N is equal to the number of years of concurrent data.  These are the 

hypothetical starting points for a measurement campaign at the site.  The starting 

points must be at least 180 days apart from all other starting points to ensure that 

the data sets used are dissimilar.  The starting points are random instead of 

sequential to avoid any potential biasing due to starting at the same time of a year 

each time. 

2. The program runs, using the reference site data for MCP predictions, and the 

decision framework outlined above.  An MCP prediction of the long-term mean 

wind speed is made at the end of each measurement period, and the program stops 

when a decision to either build or not build is made.  At the end of the four 

measurement periods, a decision is made no matter what.  The measurement 

period of the decision and the decision itself are stored.  This is referred to as the 

“objective decision.” 

3. For the same starting point, a full year of measured data is also used to predict the 

long-term mean wind speed and make a decision of whether or not to build the 

wind farm.  This is referred to as the “one-year decision.”  This serves as a useful 

comparison, as it represents the status quo method for site assessment.   

4. The actual NPV of the objective decision and the one-year decision are calculated 

using the entire target site wind resource.  In this way, the true results of the 

decisions are calculated, as the full target site wind resource is representative of 

the true wind resource at the site.  This is referred to as the “true decision.” 
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5. The average measured days saved, the percentage of correct objective decisions 

and one-year decisions relative to the true decisions, and the average amount of 

money saved using the objective decision are then calculated for each site, by 

averaging across the N runs. 

5.0 Results 

In using the decision making framework for this application, there are two primary 

priorities.  First, it is desirable that the decisions made are identical to the true decision, 

which is made with the full target site wind resource.  This indicates the accuracy of the 

decisions, and it is important to compare the decisions to the true decision, as the 

decisions made using one year of measured data may be incorrect as well.  Second, it is 

desirable that the decisions be made as rapidly as possible.  These two effects contribute 

to the overall amount of money that is saved using the decision making approach.  

Incorrect decisions result in lost money due to either building a wind farm when the wind 

resource is not actually good enough to build, or not building a wind farm when the wind 

resource is good enough.  Either way, money is lost with an incorrect decision.  

Furthermore, more rapid decisions result in lower monitoring costs, and less discounting 

of the cash flows.  The two priorities are often in conflict with each other, as rapid 

decisions are accompanied by more uncertainty in the estimate of the long-term mean 

wind speed.  Thus, this approach can only be successful if a balance is struck, resulting in 

accurate and rapid decisions.  These results are shown below in Table 2.  They are the 

average over the 15 sites, with a total of 130 separate simulations.   
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Correct Percentage - Objective Decisions (%) 97.7%
Correct Percentage - One Year Decisions (%) 96.9%
Overall Average Measurement Length (Days) 199
Overall Average NPV Saved ($) $121,600  

Table 2 – Analysis Results 

The results indicate: 

• Approximately 98% of the time, the objective decision results in the identical 

decision as the true decision, while approximately 97% the one-year decision 

results in the same decision as the true decision.  These decisions can be either to 

build or not to build.  Overall, the objective decision has slightly better accuracy 

than the one-year decision.  This difference is not statistically significant, 

however, and so in essence the two methods appear to have equivalent accuracy. 

• 99.2% of the objective decisions and the one-year decisions are identical. 

• The average measurement length using the objective decision making approach is 

approximately 199 days.  This is slightly larger than half of a full year, and so 

there is a 45% reduction in measurement length using this approach. 

• The result is an average savings of approximately $122,000 per site assessment 

using the objective decision making approach.  This savings is enabled by both 

accurate decisions and rapid measurement. 

 

Figure 29 shows the fraction of correct decisions at each site using the objective 

decision making approach compared to the true decision.  The fraction is plotted as a 

function of the long-term capacity factor at the target site, to investigate how the results 

depend on the windiness of the site (the more windy the site, the larger the capacity 

factor).  Each data point corresponds to one of the 15 sites.  For 12 of the 15 sites, the 
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objective decision making approach is correct 100% of the time.  Only 3 sites have even 

a single incorrect decision, and at each of these three sites, only a single simulation 

results in an incorrect decision.  Overall, of the 130 simulations, there are only three 

instances of incorrect decisions using the objective decision making method.  
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Figure 29 – Correct Decision Percentage for Each Site 

The average measurement length for each site as a function of the long-term capacity 

factor is shown in Figure 30, again to investigate how the results depend on the windiness 

of the site.  It indicates that the average measurement length at each site ranges from as 

short as 90 days, to as long as 315 days.  Also, while it is not a very strong pattern, the 

longer measurement lengths tend to occur at sites with moderate capacity factors.  These 

sites are only somewhat windy, with capacity factors near the break even value of 25-

26%.  The results indicate that it is more difficult to make definitive decisions at these 
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sites, presumably because it is uncertain whether or not building a wind farm will be 

successful.  In these situations, it appears that collecting more data and reducing 

uncertainty is the appropriate option, and therefore longer measurement lengths occur.  

For sites with either very good or very bad wind resources (greater than 30% or less than 

20% long-term capacity factor), the measurement length tends to be shorter overall.  

Because the capacity factor is not close to the break-even value at these sites, decisions 

can be made early on, despite the larger uncertainty due to a short measurement length. 
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Figure 30 – Average Measurement Length for Each Site 

Finally, the average NPV saved per simulation for each site as a function of the long-

term capacity factor at each site is shown in Figure 31.  Figure 31 indicates that for bad 

sites, with very small capacity factors (i.e., not very windy), a modest amount of savings 

is possible (~$25,000) as a result of reduced measurement lengths.  At moderate sites 
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with capacity factors between 20% and 30%, the savings are actually least, because the 

average measurement length tends to be longest at these sites.  But, as the long-term 

capacity factor gets larger for the windy sites, the average NPV saved also gets larger.  

This is due both to reduced monitoring costs and reduced discounting of the cash flows 

due to shorter measurements.  In general, the better the wind resource at a site, the more 

money saved using the objective decision making approach.  Finally, the average NPV 

saved for all sites is positive.   
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Figure 31 – Average NPV Saved for Each Site 

6.0 Conclusions and Recommendations 

The results presented above demonstrate that the objective decision making approach 

for wind energy site assessment can be an extremely effective means of accelerating the 
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site assessment process and saving money without a sacrifice in the accuracy of the 

decisions.  Some important conclusions and recommendations on implementation of this 

approach are now given. 

• The objective decision making approach is uniformly effective, and is especially 

effective for either very good (i.e., windy) or very bad sites.  At marginal sites, the 

savings are less because the required measurement length tends to be very long, 

nearly a full year.  At these sites, because of the lengthy measurement using the 

objective decision making method, it may be worthwhile to measure for an entire 

year, as the savings are very small.  This is a somewhat circular recommendation: 

it requires knowing that the long-term capacity factor is marginal before 

measurement begins.  One solution is to utilize either wind maps, atlases, or near 

by reference site data to get a “ballpark” estimate of the long-term capacity factor 

at the site of interest.  If it is very close to the break-even capacity factor, then the 

traditional method of measuring a full year of data can be employed.  For sites 

that appear promising beforehand, or sites that are likely not promising, then the 

objective decision making approach can be utilized exclusively. 

• An advantage of ground-based devices that is also touched upon in Chapter II, 

Section 2.0, is their ability to measure the wind resource at the turbine hub height, 

and so they obviate the need for shear extrapolation.  Shear extrapolation 

uncertainty is often the largest source of uncertainty in the estimation of the wind 

resource [16].  While the relevant uncertainties are modeled in this research, they 

are not compared to the uncertainty that occurs in the traditional site assessment 

approach, when a met tower is used to measure the wind resource.  While the 
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objective decision making approach may be accompanied by larger uncertainty 

due to shorter measurement periods, this effect is potentially much less severe 

than the shear extrapolation uncertainty that arises when a met tower is used.   

Overall, utilizing this approach with a ground-based device does not necessarily 

imply that the uncertainty in the wind resource estimate is larger than if a met 

tower is used to measure the wind resource for an entire year. 

• Because of the 10th percentile debt service coverage ratio constraint, reducing the 

uncertainty in the process causes a decision to build a wind farm to become more 

likely.  Reduced uncertainty makes this constraint less restrictive, and therefore 

decisions to build are more common.  This effect can be visualized in Figure 32, 

which shows the same decision space from Figure 28 (the solid lines), and a new 

decision space (the dashed lines).  The new decision space is created by reducing 

the additional wind resource uncertainty from 7% to 5.4% and the power curve 

uncertainty from 8% to 5%.  These original values are discussed in Section 4.3.  

In Figure 32, the upper boundary is lowered noticeably, indicating that a decision 

to build the wind farm is more likely.  The lower boundary remains fairly 

constant, except for the final measurement period, which is lowered as well.  The 

overall effect of reducing uncertainty in the process is to narrow the “Continue 

Measurement” space, and to expand the “Build” space, while keeping the “Do 

Not Build” space relatively constant until the final measurement period.  There 

are numerous possible means of reducing uncertainty, including reduced 

measurement uncertainty, reduced power curve uncertainty, and reduced 

economic uncertainty via more secure revenue guarantees or more secure 
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subsidies.  Regardless of the means of reducing uncertainty, there is a strong 

motivation to do so, as it has a direct effect on the likelihood of wind energy 

development occurring.  While there are some uncertainty sources that are purely 

physical byproducts of the site assessment process, many uncertainties in the 

process are derived from state and federal policies on subsidies.  These results 

indicate that not only the actual value of a subsidy, but also the certainty of it can 

affect the rate and likelihood of wind energy development.  More certain long-

term subsidies, like the feed-in tariffs that are used in Europe, can have a 

pronounced long-term effect and accelerate the development of wind energy. 
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Figure 32 – Effect of Uncertainty on Decision Space 

• From a practical perspective, initially this objective decision making approach 

may be difficult to implement on a large scale because of the issue of 

Solid Line – More Uncertainty 
Dashed Line – Less Uncertainty 
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“bankability.”  Because wind farms are such large capital investments, almost all 

wind farms require financing from some type of bank or lending institution.  

These loans are often conditional on an independent assessment from a 

consultant, and because of the risk averse nature of these lending institutions, a 

full year of measured data is likely required or strongly preferred.  The result is 

that even in instances when the objective decision making approach is both 

appropriate and correct, it may not be adopted.  While this conservative approach 

may be unavoidable, it would also be a missed opportunity and an inefficient path 

to pursue, as it would ignore the substantial potential savings in time and money 

indicated by these results. 

• On the other hand, government sponsored site assessment programs, in which a 

government body is financing both the monitoring and the wind farm, may be an 

ideal application for this approach.  These programs often have priorities other 

than making money, such as rapid growth of renewable energy and diversification 

of the energy generation portfolio.  Strict requirements for site assessment 

practices may not relevant in these cases.   

• In the long-term, as experience is gained with this approach, and its effectiveness 

is validated, it is hoped that this method can become much more commonly used.  

The results are extremely compelling, and a transition towards more effective and 

efficient site assessment methods can increase wind energy development.   

 

Overall, the approach developed in this Chapter offers an innovative means of 

accelerating the site assessment process.  The results indicate an impressive accuracy 
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along with substantial savings in the cost of wind energy development.  While the initial 

implementation of this approach may be difficult, eventually it may offer a viable 

alternative to the traditional one year measurement period utilized in site assessment 

today. 
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CHAPTER V  

THE ROUND ROBIN SITE ASSESSMENT STRATEGY 

1.0 Introduction 

In the traditional site assessment process, the wind resource is typically measured at a 

site for at least one year.  This feature of site assessment, discussed in Chapter I, Section 

1.2, is due to seasonal variations in the wind resource.  Measurement periods less than 

one year can also be used in the MCP process, although the accuracy and precision of the 

predictions of the long-term wind resource generally decreases as the measurement 

period decreases [52].  This Chapter describes the development of a new technical 

approach for wind resource measurement, which relies on ground-based devices, that 

seeks to shorten the required measurement length at a site, without the associated 

decrease in the accuracy and precision of the estimate of the long-term wind resource.  

Ground-based measurement devices, such as SODARs or LIDARs, are beginning to 

be used as alternatives to met towers for wind resource assessment.  These devices, 

discussed in Chapter II, offer numerous potential advantages compared to traditional met 

towers.  Specifically, they are portable and easy to install, especially when compared to 

met towers.  Their portability offers a further advantage beyond convenience: it can be 

exploited to allow for alternative monitoring strategies.  Met towers are completely 

stationary, and therefore measure continuously at one location for the duration of their 

deployment.  Conversely, SODARs and LIDARs are easily transported between sites, 

allowing for discontinuous measurement periods.  In practice, the portability of these 

devices has not been consistently capitalized upon in the site assessment process.   
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This Chapter investigates the use of a new technical approach for wind resource 

assessment, which is dubbed the “round robin site assessment method”. The premise of 

the round robin site assessment method is to measure the wind resource at multiple sites 

in a single year using a single portable device (capable of measuring at the hub height of 

a turbine), and to distribute the measurement time at each site over the whole year.  The 

measurement period at each site is not continuous when using the round robin site 

assessment method.  Rather, the total measurement period is comprised of smaller 

segments of measured data, discontinuously distributed over the course of one year.  

An example of the round robin site assessment method helps to clarify this premise: 

in one year, one wishes to measure the wind resource at two sites, spaced within a few 

hours drive of each other.  One could measure at the first site for the first six months of 

the year, and then at the second site for the remaining six months of the year.  This is the 

standard, continuous measuring method.  However, because of seasonal fluctuations in 

the wind speed, measuring for only six months at each site can lead to 

mischaracterization of the wind resource at both sites, and therefore large errors and 

uncertainty.  The round robin site assessment method approaches the monitoring strategy 

differently.  The wind resource is measured at the first site for some fraction of six 

months (e.g., one month).  This is the “round robin measurement period.”  When the 

initial round robin measurement period is complete, the portable measurement device is 

transported to the second site, where the wind resource is again measured for the duration 

of the round robin measurement period.  This process is repeated, with the measurement 

device being transported back and forth between sites, until the year is completed.   
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By using the round robin site assessment method, the wind resource at both sites can 

be assessed in a single year, and the seasonal fluctuations in the wind speed are captured 

in the data as well.  Essentially, the round robin site assessment method aims to increase 

the number of sites that can be assessed in a single year, and therefore the efficiency of 

the site assessment process, without the sacrifice in accuracy and precision that usually 

accompanies measurement periods less than one year.  The portability of the remote 

measurement devices enables this potential combination of increased efficiency and high 

performance.   

In this Chapter, fifteen pairs of long-term data sets are used to investigate the efficacy 

of the round robin site assessment method.  The traditional continuous wind monitoring 

approach is compared to the discontinuous round robin approach, for various total 

measurement lengths and for various round robin measurement periods.  The results 

demonstrate that the round robin site assessment method is an effective monitoring 

strategy that improves the accuracy and reduces the uncertainty of MCP predictions for 

measurement periods less than one year.  In fact, the round robin site assessment method 

compares favorably to the accuracy and uncertainty of a full year of resource assessment.  

While there are some tradeoffs to be made by using the round robin site assessment 

method, it is potentially a very useful strategy for wind resource assessment. 

2.0 Data Sets Used 

Fifteen pairs of long-term data sets are used in this investigation.  These data sets, 

including the steps that are taken to process the data, are discussed in detail in Chapter 

IV, Section 4.1.  Table 3 summarizes each of the data set pairs.   
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Long-term target site data are critical to any test involving MCP predictions, because 

it offers a means of objectively evaluating the MCP method.  When long-term target site 

data are available, the long-term wind resource can be determined (e.g., the long-term 

mean wind speed and Weibull parameters), and these values are considered to be the true 

values of the target site wind resource.  The goal is for the MCP method to closely predict 

these true values of the target site wind resource.  The long-term target site data set can 

be divided into smaller segments of data, and each of these segments is considered to be a 

hypothetical “measured data set”.  The reference site data along with the hypothetical 

measured data can be used to predict the long-term target site wind resource.  Therefore, 

each hypothetical measured data set produces a prediction of the target site wind 

resource, and so there are multiple MCP predictions.  Finally, each of the MCP 

predictions of the long-term target site wind resource can be compared to the true target 

site values.  In this way, long-term target site data is used to objectively evaluate MCP 

methods, since it offers a means of comparing the predictions to the true values.  

Furthermore, multiple MCP predictions can be made with a single pair of long-term data 

sets, which allows for the variability of the predictions to be assessed.   
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Data Set Name State/Region Distance Years of Good Data
Buoy 44013 NE
Buoy 44011 NE
Buoy 46005 NE
Buoy 46002 NE
Cornucopia WI

Rib Lake WI
Currie MN

Breckenridge MN
Currie MN

Montevideo MN
Hatfield MN
St. Killian MN

Buoy 44007 NE
Buoy 44005 NE
Buoy 44008 NE
Buoy 44013 NE

Buoy BUZM3 NE
Buoy IOSN3 NE

Buoy MDRM1 NE
Buoy MISM1 NE

Cedar IA
Red Oak IA

Estherville IA
Forest City IA

Sibley IA
Inwood IA

Sutherland IA
Radcliffe IA

Buoy 51001 Pacific
Buoy 51003 Pacific
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Table 3 – Summary of Data Sets 

3.0 Data Analysis  

The premise of the round robin site assessment method is to measure the wind 

resource at multiple sites in a single year, with the measured data at each site distributed 

over the course of the year in smaller discontinuous segments.  It is important to 

emphasize that in all cases in this analysis, the measurement of the wind resource at any 

site takes place within a one year time frame.  Since there are multiple years of target site 

data for the data sets, each one year time frame is analyzed individually. 
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An example illustration of the round robin site assessment method is shown in Figure 

33.  In this example, two sites are assessed in the one year time frame between January 1, 

1999 and January 1, 2000.  The wind resource is measured at each site for a total of six 

months, and the six months of measured data at each site are comprised of six smaller 

segments of data, each one month in length and each separated by one month.  The 

arrows in Figure 33 indicate the individual segments of measured data.  The ground-

based device is transported between sites at the end of each month over the course of one 

year.       
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Figure 33 – Example of Measurements at Two Sites 

The goal of this analysis is to assess the utility of the round robin site assessment 

method.  Specifically, two important questions are addressed in this analysis: 
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1. How does the round robin site assessment method, for a given measured data 

length per site, compare to the standard method, which uses a continuous 

measurement period, for that same measured data length per site?  For example, 

one could employ the round robin site assessment method as shown in Figure 33, 

with a total of six months of measured data at each site, and with the measurement 

device alternating between sites every month.  This would produce a 

discontinuous measured data set at each site.  Alternatively, one could use the 

standard method and measure the wind resource continuously for six months at 

one site, and then six months at the other site.  This question aims to determine 

the relative performance between these two methods, when the same amount of 

data is measured at each site.   

2. How does the round robin site assessment method, for a given measured data 

length at a site, compare to the standard method using a full year of measured data 

at that site?  For example, one could again use the two-site round robin site 

assessment method, and so a total of six months of data are measured at each site.  

These results can then be compared to the results when a full year of continuous 

data is measured at the target sites.    

 

The first question assesses the merits of the round robin site assessment method 

relative to equally short measured data lengths using the standard method.  Initially, it 

seems likely that the round robin site assessment method would be an improvement over 

the standard method with the same measured data length, due to the ability of the round 

robin site assessment method to encompass seasonal variations in wind speed.  The 
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second question addresses a more important point: whether or not the round robin site 

assessment method, given its increased efficiency, provides enough accuracy and 

precision relative to a full year of measured data to make it a useful strategy.  Section 4.0 

utilizes these two questions as a framework for the discussion of the results. 

The performance of a given method in this analysis is evaluated on its ability to 

predict the long-term wind resource at a site.  The two factors that are used to 

characterize the long-term wind resource are:  

• The mean wind speed. 

• The Weibull shape parameter, k.   

 

Both the accuracy and the variance of the predictions are important.  The methods are 

assessed based on both the error of the predictions, as well as the standard deviation of 

the predictions.  In all cases, the predictions of the mean wind speed and k are compared 

to the respective true long-term values of the mean wind speed and k for the particular 

target site data that is being predicted.   

3.1 Primary Analysis Parameters 

While many parameters are assessed in this analysis, there are two that are 

particularly interesting and relevant to the utility of the round robin site assessment 

method.  These are: 

1. The number of sites evaluated in a year, and therefore the measured data length 

per site.  The measured data length per site is labeled MDL.  In general, MDL at 

each site, in months, is simply equal to twelve months divided by the total number 

of sites measured in the year.  Therefore, when two sites are evaluated in a year, 
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MDL at each site is six months, as in the example in Figure 33.  Similarly, if three 

sites are evaluated, then MDL at each site is 4 months.  In this Chapter, both two 

site and three site scenarios are tested. 

2. The round robin measurement period, which is labeled RRMP.  This time frame is 

defined as the period of time that the measurement device is kept at an individual 

site before being moved to another site.  In the example in Figure 33, RRMP is 

equal to one month, and so over the course of one year, the device is moved 

between sites in one-month increments.  RRMP can conceivably range from as 

small a time period as a few days, to as long as one half of the measured data 

length.  Thus, when using two sites, and MDL is six months, the maximum RRMP 

value is three months.  The lower limit is only restricted by the transport time 

between sites, and the inconvenience of moving the device frequently.  In 

practice, it is unlikely that one would be inclined to move the device more than 

once per week.  In this Chapter, RRMP values of 10 days, 30 days, and 60 days 

are investigated. 

3.2 Data Analysis Procedure 

Each of the fifteen data sets shown in Table 3 is analyzed as follows: 

1. For each data set, the round robin site assessment method is assessed for values of 

MDL of 4 months and 6 months, and values of RRMP of 10 days, 30 days, and 60 

days.  Also, the standard method, where the measured data set is continuous, is 

considered for values of MDL of 4 months, 6 months, and 12 months. 

2. Each one year time frame of data at the target site is considered. 
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3. Within each one year time frame, N measured data sets are selected, where N is 

simply equal to 12 months divided by the value of MDL.  Thus, values of N=2 

and N=3 are considered for the round robin site assessment method, and values of 

N=1, N=2, and N=3 are considered for the standard method.  These measured data 

sets are discontinuous for the round robin site assessment method (like in Figure 

33), and continuous for the standard method. 

4. For each measured data set, the concurrent data between the target site and the 

reference site are determined. 

5. MCP is performed using the Variance Ratio method, which is described in 

Chapter II, Section 5.0.  The mean wind speed and k at the target site are 

predicted for each measured data set.  The percentage errors in the prediction 

from the true long-term value of the mean wind speed and k at the target site are 

calculated for each measured data set. 

6. The mean and standard deviation of the percentage error of the predictions is then 

calculated for each data set, and for each value of MDL and RRMP.  For a given 

value of MDL and a given data set, the total number of predictions is equal to N 

multiplied by the number of years of target site data.  So, for a site with 5 years of 

target site data, and a value of MDL equal to 4 months (so N=3), there would be 

15 total predictions, and the mean and standard deviation of the percentage error 

in each of these predictions is then calculated. 

 

Finally, the results from the analysis of each data set are consolidated across all the 

data sets.  First, the root-mean-square of the mean percentage error for each site is 
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calculated.  Second, to consolidate the standard deviation of the percentage error for each 

site, σi, a pooled estimate is used.  The overall pooled standard deviation σP, consolidated 

across the data sets, is calculated using Eq. 51, where σi is the standard deviation of the 

percentage error at the ith site, and there are m total sites.   

m

m

i
i

P

∑
== 1
σ

σ  
Eq. 51

These values are calculated for both the predictions of the mean wind speed and k, for 

both the round robin site assessment method and the standard method, and for each value 

of MDL and RRMP (when the round robin site assessment method is utilized).  For the 

mean wind speed predictions, the root-mean-square of the mean percentage error is 

labeled RMSE(U), and for k it is labeled RMSE(k).  Likewise, the pooled standard 

deviation of the percentage error is labeled PSTD(U) and PSTD(k) for the mean wind 

speed and k, respectively. 

RMSE indicates the accuracy of the predictions for a particular method and set of 

parameters.  Smaller values of RMSE correspond to better results.  PSTD indicates the 

uncertainty of the predictions for a particular method and set of parameters.  Smaller 

values of PSTD signify instances when there are smaller amounts of variability in the 

MCP predictions, and therefore less uncertainty in the predictions.  These results are 

presented in the next Section. 

4.0 Results and Discussion 

The results of the analysis described in Section 3.0 are now discussed.  The results 

relevant to the prediction of the mean wind speed are discussed first, followed by the 



 191

results relating to the prediction of the Weibull parameter k.  In general, the two questions 

raised at the beginning of Section 3.0 are utilized as a framework for the discussion, as 

they specifically address the performance of the round robin site assessment method in 

relation to the standard data measurement method. 

4.1 Prediction of the Mean Wind Speed 

All of the results in this Section relate to the prediction of the mean wind speed.  Both 

RMSE(U) and PSTD(U) are discussed in this Section. 

4.1.1 Accuracy of the Prediction of the Mean Wind Speed 

The plot in Figure 34 shows the results for RMSE(U) across all data sets for the two 

data measurement methods, and for various values of MDL and RRMP.  The results for 

the standard method are labeled as such, and the results for the round robin site 

assessment method are labeled by their respective values of RRMP.  Note that RMSE(U) 

is less than 1.1% in all cases.  In all cases, a smaller value of RMSE(U) corresponds to a 

better result.  Also, the standard method has data for a value of MDL of 12 months, 

whereas the round robin site assessment method does not. 
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Figure 34 – Accuracy of the Mean Wind Speed Predictions  

The two questions raised at the beginning of Section 3.0 are now addressed. 

1. The round robin site assessment method often greatly reduces the value of the 

RMSE(U) relative to the standard measuring method using the same measured 

data length, and never produces an increase in the value of RMSE(U).  The round 

robin site assessment method produces an especially dramatic improvement for a 

value of MDL of 4 months.  For a value of MDL of six months, the round robin 

site assessment method still produces an improvement, but it is less pronounced.   

2. The round robin site assessment method also always reduces the value of 

RMSE(U) relative to the standard method when a full year of concurrent data is 

used.  This result is somewhat surprising, as one would assume that a full year of 
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data would produce the smallest value of RMSE(U) in all cases.  However, for this 

analysis, that is not the case.   

 

The results are also summarized in Table 4, which shows the values of RMSE(U) in 

Figure 34. 

4 6 12
10 0.78 0.79 -
30 0.73 0.83 -
60 0.71 0.78 -

Standard Method 1.03 0.88 0.87

Round Robin Measurement 
Period (Days)

Measured Data Length (Months)

 
Table 4 – RMSE(U) for Round Robin Site Assessment Method and Standard Method 

The round robin site assessment method always decreases, often to a significant 

degree, the value of RMSE(U), both relative to the same value of MDL, and relative to a 

full year of measured data.  The improvement is especially pronounced for a value of 

MDL of 4 months.  It appears that a value of 60 days for RRMP produces the best results, 

but this is not a particularly strong effect.   

Overall, the difference in the accuracy of the predictions using the round robin site 

assessment method and a full year of measured data is small, and is not likely to be 

significant.  The more important general point is that the round robin site assessment 

method produces equivalent accuracy in predicting the mean wind speed, compared to a 

full year of measured data. 

4.1.2 Uncertainty of the Prediction of the Mean Wind Speed 

PSTD(U) is shown below in Figure 35.  PSTD(U) is used as a measure of the 

uncertainty in the prediction of the mean wind speed.  In this discussion, these two terms 

are used interchangeably.  Thus, smaller values of uncertainty correspond to better 
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methods.  In all cases, the uncertainty of the prediction of the mean wind speed is 

between 3% and 6%.  Again, the results for the standard method are labeled as such, and 

the results for the round robin site assessment method are labeled by their respective 

values of RRMP. 
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Figure 35 – Uncertainty of the Mean Wind Speed Predictions 

Figure 35 shows two very consistent patterns.  First, the uncertainty of the predicted 

mean wind speed decreases with increasing values of MDL.  Second, the uncertainty of 

the predicted mean wind speed decreases with decreasing values of RRMP.  Once again, 

the results can be discussed in the framework of the two questions posed at the beginning 

of Section 3.0. 

1. For MDL values of both 4 months and 6 months, the round robin site assessment 

method significantly reduces the uncertainty of the prediction of the mean wind 
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speed compared to the standard method.  Furthermore, the magnitude of the 

reduction increases with decreasing values of RRMP.  Thus, the lowest value of 

PSTD(U) occurs for a value of RRMP of 10 days.  Finally, for any given value of 

RRMP, the uncertainty decreases with increasing values of MDL, so that the 

uncertainty is always smaller for MDL of 6 months compared to 4 months.   

The relationship between the uncertainty of the predicted mean wind speed 

and the round robin measurement period length can be further investigated using 

Figure 36.  Figure 36 shows the values of the uncertainty as a function of RRMP, 

for MDL values of 4 months and 6 months.  Figure 36 again indicates that 

PSTD(U) decreases with a decreasing value of RRMP.  This effect is especially 

pronounced when MDL is 4 months.  The results indicate that when MDL is 4 

months, for large values of RRMP, decreasing RRMP causes a larger reduction in 

the uncertainty than for smaller values of RRMP.  When MDL is 6 months, 

PSTD(U) is nearly constant as a function of RRMP.  
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Figure 36 – Effect of the Round Robin Measurement Period 

In practice, this plot indicates that there are diminishing returns associated 

with decreasing the round robin measurement period.  When MDL is 4 months, 

decreasing RRMP beyond 30 days results in very little improvement in the 

uncertainty of the prediction of the mean wind speed.  When MDL is 6 months, 

PSTD(U) is nearly independent of RRMP and so there is little incentive to 

decrease the value of RRMP.   

This effect can be viewed in terms of the number of trips required to move the 

ground-based device.  The total number of trips in a year is simply equal to 365 

days divided by the round robin measurement period in days, plus 1.  Thus, 

smaller values of RRMP correspond to a larger number of trips.  Figure 37 shows 

PSTD(U), for both values of MDL, as a function of the total number of trips 
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required in one year.  Again, the diminishing returns associated with decreasing 

RRMP and therefore increasing the number of trips can be seen in Figure 37.  As 

a comparison, when the standard method is used, there are 3 trips for a value of 

MDL of 6 months, and the value of PSTD(U) is 4.8%.  There are 4 trips for a 

value of MDL of 4 months, and the value of PSTD(U) is 5.1%.   
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Figure 37 –Number of Trips in the Round Robin Site Assessment Method 

2. In almost all cases, the value of PSTD(U) when the round robin site assessment 

method is used is nearly identical to the value of PSTD(U) for the standard 

method with a full year of measured data.  Only when MDL is 4 months and 

RRMP is 60 days is the uncertainty in the predictions using the round robin site 

assessment method significantly larger than the uncertainty for the standard 

method.  Overall, compared to a full year of concurrent data using the standard 
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method, the round robin site assessment method performs nearly equivalently 

well. 

 

The results are also summarized in Table 5, which shows the values of PSTD(U) in 

Figure 35. 

4 6 12
10 3.70 3.58 -
30 3.76 3.72 -
60 4.48 3.73 -

Standard Method 5.12 4.75 3.63

Round Robin Measurement 
Period (Days)

Measured Data Length (Months)

 
Table 5 - PSTD(U) for Round Robin Site Assessment Method and Standard Method 

The round robin site assessment method appears to be extremely effective at reducing 

PSTD(U) for a given value of MDL less than 1 year.  Moreover, PSTD(U) for the round 

robin site assessment method is often very similar to PSTD(U) when a full year of 

measured data is used.   

4.1.3 Summary of Mean Wind Speed Predictions 

Figure 34 and Figure 35 indicate that the magnitude of the uncertainty of the 

predictions, PSTD(U), is significantly larger than the magnitude of the accuracy of the 

predictions, RMSE(U).  The result is that the accuracy of all predictions are essentially 

equivalent, as small differences in RMSE(U) are negligible compared to the magnitude of 

PSTD(U).  The various methods and parameter values can then be compared strictly in 

terms of the values of PSTD(U). 

The overall point is that the round robin site assessment method provides uncertainty 

values comparable to a full year of measured data in almost all cases, and so the two 

methods are interchangeable in terms of the uncertainty of the predictions.  This 
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equivalence is the primary result of this analysis; namely, the round robin site assessment 

method, in which multiple sites are evaluated in a single year, yields comparable 

prediction uncertainty to a full year of measured data.  The implication of these results is 

discussed further in Section 5.0. 

4.2 Prediction of k 

All of the results in this Section relate to the prediction of k, and both RMSE(k) and 

PSTD(k) of the predictions are discussed. 

4.2.1 Accuracy of the Prediction of k 

The plot in Figure 38 shows the results for RMSE(k) across all data sets for the two 

data measurement methods, and for various values of MDL and RRMP.  The results for 

the standard method are labeled as such, and the results for the round robin site 

assessment method are labeled by their respective values of RRMP.  Note that RMSE(k) 

is less than 2% in all cases.  In all cases, a smaller value of RMSE(k) corresponds to a 

better result.  Also, the standard method has data for a value of MDL of 12 months, 

whereas the round robin site assessment method does not. 
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Figure 38 – Accuracy of the Predictions of k 

The two questions raised at the beginning of Section 3.0 can again be used to analyze 

the results. 

1. The round robin site assessment method uniformly reduces RMSE(k) relative to 

the standard method using the same value of MDL, in some cases dramatically so.  

There does not appear to be a strong pattern with regards to the value of MDL or 

RRMP.   

2. The round robin site assessment method has mixed results relative to using a full 

year of measured data.  In four of the six cases, the round robin site assessment 

method reduces the value of RMSE(k) compared to a full year of measured data.  

There does not seem to be a pattern with regards to the value of MDL or RRMP.  
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However, a value of RRMP of 60 days is the only instance where the error is 

reduced for both values of MDL.   

 

The results are also summarized in Table 6, which shows the values for RMSE(k) 

from Figure 38. 

4 6 12
10 1.59 1.50 -
30 1.45 1.69 -
60 1.47 1.42 -

Standard Method 1.59 1.85 1.51

Round Robin Measurement 
Period (Days)

Measured Data Length (Months)

 
Table 6 - RMSE(k) for Round Robin Site Assessment Method and Standard Method 

The round robin site assessment method appears to improve RMSE(k), relative to the 

standard method with a measured data set of the same length.  When the round robin site 

assessment method is compared to the standard method with a measured data length of 

one year, the results are mixed, with the round robin site assessment method sometimes 

offering an improvement over the standard method, and other times not.  While the 

results with a value of RRMP of 60 days are best, there is no discernable pattern to 

indicate how the accuracy depends on RRMP.  In general, there appears to be more 

randomness in the predictions of k compared to those of the mean wind speed.   

4.2.2 Uncertainty of the Prediction of k 

The results for PSTD(k) are shown below in Figure 39.  PSTD(k) is used as a measure 

of the uncertainty in the prediction of the mean wind speed.  Smaller values of 

uncertainty correspond to better methods.  In all cases, the uncertainty of the prediction of 

k is between 4% and 7%.  Again, the results for the standard method are labeled as such, 
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and the results for the round robin site assessment method are labeled by their respective 

values of RRMP. 
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Figure 39 – Uncertainty of the Predictions of k 

The two questions raised at the beginning of Section 3.0 are used to analyze the 

results. 

1. In all cases, the round robin site assessment method reduces the average 

uncertainty of the prediction of k relative to the standard method for the same 

measured data length.  There does not appear to be a pattern with regards to the 

value of RRMP.  However, the uncertainty of the prediction of k uniformly 

decreases with increasing values of MDL for a given value of RRMP.  This result 

is similar to the result for the mean wind speed.   
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2. Using a full year of measured data results in the minimum uncertainty in the 

prediction of k.  Thus, the round robin site assessment method always results in a 

higher uncertainty compared to a full year of measured data.  In general, the 

uncertainty decreases with increasing values of MDL, and so the results for MDL 

values of 6 months have smaller uncertainties than results for MDL values of 4 

months.   

 

The results are also summarized in Table 7, which shows the values for RMSE(k) 

from Figure 39. 

4 6 12
10 6.41 5.16 -
30 5.75 5.50 -
60 5.88 5.41 -

Standard Method 6.46 6.04 4.37

Round Robin Measurement 
Period (Days)

Measured Data Length (Months)

 
Table 7 - PSTD(k) for Round Robin Site Assessment Method and Standard Method 

The round robin site assessment method appears to be effective at reducing PSTD(k) 

for a given measured data length.  However, the PSTD(k) is minimized when a full year 

of measured data is used.  Overall, while the round robin site assessment method causes 

the uncertainty of the prediction of k to decrease in general, the use of measured data 

lengths less than one year still results in increased uncertainty.   

4.2.3 Summary of Mean Wind Speed Predictions 

Figure 38 and Figure 39 indicate that the magnitude of the uncertainty of the 

predictions, PSTD(k), is significantly larger than the magnitude of the accuracy of the 

predictions, RMSE(k), which is also the case for the mean wind speed predictions.  Once 

again, the accuracy of all predictions are essentially equivalent, as small differences in 
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RMSE(k) are negligible compared to the magnitude of PSTD(k).  The various methods 

and parameter values can then be compared strictly in terms of the values of PSTD(k). 

Unlike the case with the mean wind speed, the uncertainty of the predictions of k 

using the round robin site assessment method are larger than the uncertainty when using a 

full year of measured data. The implication of these results is discussed further in Section 

5.0. 

5.0 Conclusions and Recommendations 

The results and discussion from Section 4.0 can be used to summarize the findings in 

this investigation of the round robin site assessment method, and to provide a basis for 

determining when and how the round robin site assessment method should be employed.  

This investigation used the root-mean-square of the percentage error and the pooled 

standard deviation of the percentage error of the predictions of the mean wind speed and 

k as metrics to determine the accuracy and uncertainty of the two measurement methods 

for various parameters.  The major findings of this Chapter are discussed below, followed 

by general recommendations for how the round robin site assessment method can be 

implemented. 

5.1 Choice of the Round Robin Measurement Period 

• The value of RRMP has a pronounced effect on the uncertainty of the prediction 

of the mean wind speed as decreasing RRMP reduces the uncertainty of the 

predictions.  However, decreasing RRMP also dramatically increases the total 

number of trips required to move the measurement device over the course of one 

year.  This can result in larger fuel costs and increased person-hours of labor.  
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There are diminishing returns associated with decreasing the RRMP, such that 

there is likely an optimum point at which the uncertainty of the predictions is low 

but the number of trips required to move the device is not prohibitive.   

• The particular value of the RRMP appears to have no discernable effect on the 

accuracy of the predictions of the mean wind speed and k, as well as the 

uncertainty of the prediction of k, as long as the round robin site assessment 

method is being used.  Any of the three values of RRMP could result in better or 

worse results relative to the other two possibilities. 

• Overall, a reasonable choice for the value of RRMP when three sites are being 

assessed in a single year, and so MDL is 4 months, is approximately 30 days.  

When two sites are being assessed in a single year, and so MDL is 6 months, then 

a value for RRMP of 60 days seems appropriate.  

5.2 Choice of the Measured Data Length 

• When using the round robin site assessment method, the accuracy of the 

predictions of both the mean wind speed and k appears to have a weak 

dependence on the measured data length.  In some cases, increasing the measured 

data length results in increased accuracy, and in other cases it resulted in 

decreased accuracy.  For the standard method, increased measured data length 

generally results in increased accuracy, which is to be expected based on most 

previous MCP investigations.  Thus, based strictly on the accuracy of the 

predictions, two or three site round robin measurement strategies appear to be 

equally effective compared to each other.   
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• The uncertainty of the predictions of the mean wind speed and k has a strong 

dependence on the measured data length.  In all cases, whether using the round 

robin site assessment method or the standard method, increasing the measured 

data length results in decreased uncertainty in the predictions for a given value of 

RRMP.   

5.3 Comparing Methods with Equal Measured Data Length  

• When predicting the mean wind speed and k, the round robin site assessment 

method improves the accuracy of the predictions compared to the standard 

method when the same measured data length is used, in all cases. 

• Furthermore, when predicting the mean wind speed and k, the round robin site 

assessment method reduces the uncertainty of the predictions compared to the 

standard method when the same measured data length is used, in all cases. 

• Whenever multiple sites are going to be measured in a single year using a portable 

measurement device, the round robin site assessment method should be employed 

(assuming the sites are close enough together for logistical reasons).  The round 

robin site assessment method increases the accuracy and decreases the uncertainty 

of the predictions of the mean wind speed and k, on average. 

5.4 Comparing Methods to 1 Year of Measured Data  

• The accuracy of the round robin site assessment method compares favorably with 

the standard method when an entire year of data is measured at each site.  On 

average, the accuracy of the predictions is better for the round robin site 

assessment method than for the standard method with an entire year of concurrent 
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data, although the difference is small.  Compared to the magnitude of the 

uncertainty of the predictions, the differences in the accuracy are negligible, and 

so the round robin site assessment method and the standard method with a full 

year of measured data result in equivalent accuracy.   

• For the predictions of the mean wind speed, the round robin site assessment 

method results in uncertainty values that are equivalent to the uncertainty for the 

standard method when a full year of data is used.  For the prediction of k, a full 

year of measured data using the standard method results in the lowest uncertainty 

of the predictions. 

5.5 Recommendation for Implementing the Round Robin Site Assessment Method 

The round robin site assessment method can dramatically alter the nature of wind 

energy site assessment.  The traditional site assessment process entails measurement of 

the wind speed for one year using a met tower, whereas in the round robin site 

assessment method the wind resource is measured at multiple sites in a year using a 

single ground-based device.  The results indicate that the accuracy and the uncertainty of 

the prediction of the mean wind speed for the round robin site assessment method are 

equivalent to using a full year of measured data in the standard method.  For the 

prediction of k, the accuracy is likewise equivalent, but the uncertainty is somewhat 

higher using the round robin site assessment method.  On the other hand, the contribution 

of uncertainty of k to the overall uncertainty in energy production is generally very small 

relative to the uncertainty in the mean wind speed, and so this slight increase is negligible 

in the larger process of estimating the overall energy production uncertainty in the site 

assessment process [85].   
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There is an additional and significant advantage to using the round robin site 

assessment method compared to the traditional site assessment process using a met tower: 

the lack of shear extrapolation due to the use of ground-based devices for wind speed 

measurement.  Typically shear extrapolation is the largest form of uncertainty in the site 

assessment process, and its elimination reduces the overall uncertainty in the estimate of 

the long-term hub height wind resource, often to a significant extent [16],[85].  This point 

is also discussed in Chapter III. 

From a broad perspective, taking into account the entire site assessment process, and 

all the component uncertainties, these results have dramatic consequences.  The round 

robin site assessment method results in an overall reduction in the uncertainty of the 

estimate of the long-term hub height wind resource, while allowing for multiple sites to 

be assessed in a single year.  While this is a fundamental departure from the standard site 

assessment process, the results in this Chapter indicate that there is little downside to 

using the round robin site assessment method in terms of the accuracy and uncertainty of 

the predictions, and there is tremendous upside in terms of the rapidity of the site 

assessment and the reduced overall uncertainty due to the lack of shear extrapolation.   

A reevaluation of the traditional site assessment process seems appropriate.  Rather 

than continue to evaluate the wind resource using met towers, a process hindered by 

shear extrapolation uncertainty and one year measurement lengths, ground-based devices 

can be employed to dramatically increase the efficiency and decrease the uncertainty of 

site assessment.  Future wind resource assessment campaigns should give strong 

consideration to utilizing the round robin site assessment method. 
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CHAPTER VI  

THE SHORT-TERM SHEAR MEASUREMENT STRATEGY 

1.0 Introduction 

One of the primary goals of wind energy site assessment is the characterization of 

wind shear.  The importance of wind shear determination for wind turbine siting is noted 

many times [87],[88],[89].  These authors and others note that there are numerous reasons 

that the wind shear should be accurately determined at a specific site [90].  These include: 

• Accurate wind speed predictions and subsequent energy production estimates.  

• Minimization of potential wind turbine damage in high wind shear sites. 

 

For the purposes of energy production estimation, the estimate of the wind resource at 

the hub height of a wind turbine is of critical importance.  In wind energy site assessment, 

the measurement height of a met tower is usually positioned significantly below the hub 

heights of modern wind turbines (~50 m), which typically range from 70 m to 100 m.  

Shear extrapolation is also often the largest source of error and uncertainty that arises 

when evaluating the wind resource, and so there is a clear need to improve the accuracy 

of hub height wind resource estimates using shear extrapolation [16],[85]. 

1.1 Background of Shear Modeling for Wind Energy Applications 

As discussed in Chapter II, Section 6.0, shear extrapolation is a critical component of 

site assessment.  It is often a large source of error, and there is strong motivation for 

improved methods of shear extrapolation.  Furthermore, errors in the estimation of the 

wind resource propagate through the calculation of the energy production, which results 
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in even larger errors in the energy production estimate.  In fact, any error in the 

estimation of the wind resource results in approximately twice the error in the energy 

production estimate [85].   

1.2 Wind Resource Measurement Approaches 

While ground-based devices are becoming more commonly used for wind resource 

measurement, it is often not feasible to deploy a SODAR or LIDAR at a site for a full 

year, despite the clear advantage of hub height measurements.  These devices are still 

quite expensive, so if multiple sites must be assessed, it could become prohibitively 

expensive to use ground-based devices exclusively.  SODARs are also noisy, which may 

preclude their deployment at certain sites, at least for long periods of time.  Finally, a site 

may already have a met tower installed, making the presence of a SODAR or LIDAR at 

the site for a full year redundant.  Regardless, a met tower is often the only practical long-

term method for site assessment.  

This Chapter assumes that ground-based devices produce unbiased measurements 

equivalent to those that would be measured by a cup anemometer, as discussed in 

Chapter II, Section 2.0. 

2.0 Scope and Objectives 

This Chapter presents methods for improving the estimate of the hub height wind 

resource from met tower data through the use of measurements from ground-based 

devices.  The methods leverage the two major advantages of these devices: their 

portability and their ability to measure at the wind turbine hub height.  Specifically, the 

methods rely on augmenting the one year of met tower measurements with short-term 
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measurements from a ground-based device.  The goal is to improve the accuracy of shear 

extrapolation from met tower data without the need to deploy a ground-based device at a 

site for a long period of time.   

2.1 Wind Shear Modeling 

The power law and the log law are the two most commonly used models for 

extrapolating wind speeds to higher heights at a site.  This Chapter considers both 

models.  Elkinton et al. show that the two models perform equivalently in shear 

extrapolation predictions on average, although at any particular site one model may be 

better than another [16].  The power law is shown in Eq. 52 and a version of the log law 

is shown in Eq. 53 [21].  This particular version of the log law assumes neutral stability 

and no displacement height, and so it is a simplification in many cases.  The implications 

of these assumptions are discussed later.   
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• U(z) is the wind speed at height z. 

• U(zr) is the reference wind speed at the reference height zr. 

• α is the power law exponent.  

• z0 is the surface roughness height. 

 

The shear parameters can be calculated when the wind speed is measured at two 

heights.  This Chapter uses Eq. 54 to calculate α, and Eq. 55 to calculate z0.   
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• h1 and h2 are the two measurement heights, with h2 > h1. 

• U1 and U2 are the mean wind speeds at h1 and h2, respectively. 

 

It is important to emphasize that U1 and U2 in Eq. 54 and Eq. 55 are the mean wind 

speeds measured at each height.  Unless otherwise stated, all wind speed variables in this 

Chapter can be assumed to be the mean value of 10-minute or 1-hour wind speed data 

over a period of time, such as 10 days or 1 year.   

For the models shown in Eq. 52 and Eq. 53, the shear parameters depend only on the 

measurement height and wind speed.  In general, however, the shear parameters may also 

depend on the surface roughness and the stability, among others [91],[92].  Therefore, 

more complex methods for wind shear modeling are also possible.  These models may 

account for stability, utilize local topography, and estimate the shear parameters from 

multiple direction sectors.  Numerical models such as WAsP may also be utilized [93].  

The possibility of using these more complex models is discussed later.   

2.2 Selected Data Sets  

Long-term SODAR or LIDAR data near met towers are not plentiful.  Consequently, 

tall tower data are used as a surrogate for long-term data from a ground-based device in 

this Chapter.  Tall towers are met towers with upper measurement heights significantly 

higher than those of standard met towers.  These upper measurement heights are typically 
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on the order of 80-100 m, which are much higher than standard met towers, which 

typically have upper measurement heights near 50 m.   

This Chapter uses data from tall towers that have three measurement heights, with the 

highest height at approximately the hub height of a modern turbine, and the lower two 

heights at approximately the measurement heights of standard met towers.  The data from 

the lower two measurement heights can be considered to be the data that one would 

obtain from a standard met tower.  The data from the upper measurement height can be 

used as a proxy for ground-based device data.  As discussed above, recent advances using 

ground-based device result in very good agreements between measurements from these 

devices and cup anemometers on tall towers, and so it is assumed that the tall tower data 

are very similar to what would be measured if a ground-based device is used instead.  

Tall tower data has the further advantage that any shear extrapolation method can be 

verified with the data from the highest height. 

Ten data sets, each with one year of wind speed data at three measurement heights, 

are used in this analysis.  These data sets are compiled from a regional database of wind 

speed data for thirteen states in the central United States [94].  The location, surrounding 

terrain, and measurement heights of each data set are presented in Table 8.  The terrain is 

classified as either “Flat, No Trees,” “Hills, No Trees,” or “Forested”. 

These data sets are comprised of either 10-minute or hourly wind speed data.  At each 

site, two anemometers are positioned at each of the measurement heights.  For each 10-

minute or hourly average and each height, the higher of the two measured wind speeds 

from the anemometers is selected as the wind speed at that height, to combat the effects 

of tower shadow [68].  The data are also subjected to quality control tests to attempt to 
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remove any data corrupted by icing or other issues [70].  Overall, there is reasonable 

confidence in the quality of the data, and the uncertainty in the estimate of the mean wind 

speed is likely on the order of 2-3% standard uncertainty, as discussed in Chapter III.  

Nonetheless, tower shadow effects and other obstructions are difficult to identify in many 

cases, and so there is still some potential for the data to be corrupted [86].   The majority 

of the data sets do not contain sufficient temperature data for stability to be considered. 

Site Name State Description h1 (m) h2 (m) h3 (m)
Boulder CO Hills, No Trees 20 50 80

Detroit Lakes MN Forested 30 50 85
Fountain MN Forested 30 60 90
Glenmore WI Flat, No Trees 37 60 83
Hatfield MN Flat, No Trees 30 60 90
Hilman MN Forested 30 60 90
Hobart OK Flat, No Trees 40 70 100
Isabella MN Forested 30 50 75
Marshall MN Hills, No Trees 30 60 90
St. Killian MN Hills, No Trees 30 60 90  

Table 8 – Data Set Information 

Again, for each data set, the lower two measurement heights are considered to be 

standard met tower data, while the upper measurement height is considered to be data 

taken from a ground-based device. 

2.3 Motivation for Improved Wind Shear Extrapolation Methods 

The need for improved shear extrapolation methods can be highlighted using the 

statistics from the data sets used in this Chapter, shown in Table 9.  For each data set, the 

mean wind speeds at the lower two heights, U1 and U2, are calculated (the second and 

third column of Table 9).  Next, the power law exponent and roughness length are 

calculated for each site, using Eq. 54 and Eq. 55 (the fourth and fifth column).  The 

calculated power law exponent and roughness length are then used to predict the mean 

wind speed, U3
*, at the highest height, h3, using Eq. 52 and Eq. 53 (the seventh and ninth 
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column).  h2 is used as the reference height and U2 is used as the reference wind speed.  

From now on, predicted quantities are labeled with a superscript *.  The predicted mean 

wind speed is then compared to the actual calculated mean wind speed, U3, at h3 (the 

sixth column).  Finally, the percentage error of the prediction of the mean wind speed at 

h3 is calculated (the eighth and tenth column). 

Predicted Predicted 
U1 U2 Actual U3 (m/s) - % Error U3 (m/s) - % Error

Site Name (m/s) (m/s) Alpha z_0 U3 (m/s) Power Law Power Law Log Law Log Law
Boulder 3.9 4.6 0.19 0.14 4.8 5.1 6.0 5.0 5.0

Detroit Lakes 4.4 5.4 0.40 3.18 6.0 6.6 11.7 6.4 7.6
Fountain 5.1 6.0 0.24 0.65 6.7 6.6 -0.4 6.6 -1.6
Glenmore 5.8 6.7 0.31 1.77 7.3 7.4 0.5 7.3 -0.6
Hatfield 5.9 7.0 0.25 0.73 7.9 7.7 -1.7 7.6 -2.9
Hilman 3.8 4.8 0.33 2.11 5.9 5.6 -5.3 5.4 -7.3
Hobart 6.7 7.5 0.21 0.42 8.1 8.1 -0.6 8.0 -1.2
Isabella 3.9 5.1 0.53 5.80 6.1 6.3 4.4 6.1 0.1
Marshall 6.4 7.7 0.25 0.82 8.2 8.5 4.2 8.4 2.8
St. Killian 6.1 7.9 0.38 3.06 7.9 9.2 16.2 9.0 13.1  

Table 9 – Mean Wind Speed Predictions 

The eighth and tenth columns of Table 9 indicate that significant error can occur in 

the prediction of the mean wind speed when using shear extrapolation.  The root-mean-

square of the error (RMSE) is 7.1% using the power law, and 5.7% using the log law.  

The average value of the percentage errors is 3.5% and the standard deviation is 6.5% 

using the power law.  Using the log law, the average value of the percentage errors is 

1.5% and the standard deviation is 5.8%.  Moreover, errors in the estimation of the mean 

wind speed disproportionately affect errors in the calculation of the energy production.  

Overall, the results of Table 9 demonstrate the need for an improved method for shear 

extrapolation.   

It is also worth noting that the error in the prediction of U3
* is consistently small for 

the sites with terrain classified as “Flat, No Trees”.  For the sites with more complex 

terrain, the errors in the predictions tend to be larger.  This is not surprising, as complex 
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terrain can greatly affect the shear profile, and cause profiles that are not as easily fit with 

the models.  Another pattern is that the calculated values of α and z0 tend to be larger at 

sites with “Forested” terrain.  This is also a logical result, as the trees at lower heights 

tend to reduce U1 relative to U2 and therefore cause larger values of the shear parameters. 

It also should be pointed out that at the St Killian, Minnesota site, the mean wind 

speeds at 60 m and 90 m are nearly identical.  This is a curious result, and helps explain 

the large prediction error for this site.  To date, no explanation has been determined for 

this result.  If this site is ignored, the RMSE using the power law would be reduced to 

5.2%, which is still a substantial amount of error. 

A more complex method for extrapolating wind speeds is also considered, in which 

the shear parameters are calculated for each of eight direction sectors.  The purpose of 

this method is to account for varying topography and roughness with direction, and 

therefore calculate more appropriate shear parameters for each direction sector.  Despite 

the logic of this method, the results are nearly identical to the methods described above 

that did not sort the data by direction.  This method is not utilized in later analysis. 

In general, the power law and log law methods are not necessarily the most advanced 

methods for performing wind shear extrapolation.  On the other hand, they are often the 

only available methods.  Accurate temperature data at multiple heights is not generally 

available for stability considerations.  Furthermore, these models are very commonly 

used by wind energy developers and consultants [93].  Therefore, these models are used 

in later analyses for comparison, and so the predictions from Table 9 are the baseline 

predictions. 
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2.4 Objectives 

The goal of the research is to develop methods that can be applied to wind resource 

measurement campaigns in order to improve the accuracy and precision of wind shear 

extrapolation predictions.  Two distinct scenarios are analyzed in this Chapter.  Each 

represents a situation in which short-term hub height measurements may be able to 

improve the shear extrapolation estimate.  They are: 

• Scenario 1: Short-term hub height measurements from a ground-based device are 

used in conjunction with a full year of data from a standard met tower, with two 

measurement heights.  In this scenario, the short-term hub height data can be used 

to adjust the calculated shear parameter from the lower met tower measurement 

heights.   

• Scenario 2: In this scenario, there is only a single lower measurement height.  

Once again, short-term hub height measurements from a ground-based device are 

used.  While standard met towers that measure at two heights are cumbersome 

and difficult to install, one could instead utilize “jack-up” towers or other shorter 

towers that are much easier to deploy.  The drawback of these towers is that they 

are shorter than standard met towers.  In this scenario, it is assumed that these 

portable towers can only measure at a single height.  The short-term hub height 

measurements are therefore the only data available for estimating the shear 

characteristics at the site.   
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3.0 Data Analysis  

The data sets in Table 8 are used to explore improved methods for shear 

extrapolation.  Two scenarios are considered: a standard met tower with two 

measurement heights, and a shorter portable tower with a single measurement height.  

For each scenario, short-term hub height measurements are used to improve the shear 

extrapolation.  This Section describes the analysis that is performed for each scenario. 

3.1 Primary Analysis Parameters 

In the analysis of each scenario, two important parameters are considered.  These 

parameters define how the short-term hub height measurements are performed.  These 

are: 

1. Total short-term measurement length, NDays.  This parameter defines the total 

length of time, measured in days, that the short-term measurement is performed at 

the site using the ground-based device.  This parameter is varied from a minimum 

of 10 days to a maximum of 100 days. 

2. Total number of measurement segments, Nseg.  This parameter indicates the total 

number of measurement segments that constitutes the total short-term 

measurement length.  One segment and two segments are considered.  For one 

segment, a single continuous measurement with the ground-based device is 

carried out for a length of NDays.  When two segments are used, then two 

discontinuous measurements are performed, each with a length of one half of 

NDays.  The two measurement periods are separated by 180 days.   

This parameter is explored due to the potential for variations in the shear 

profile over the course of the year to affect the results.  The shear profile at a site 
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is not constant during the year.  Instead, seasonal variations can cause the shear 

profile to vary substantially in time.  Figure 40 shows the monthly power law 

exponent for five of the sites listed in Table 8.  While not shown, the surface 

roughness length also displays pronounced monthly variations.  These variations 

can be caused by a number of factors, including seasonally dependent stability 

characteristics or prevailing wind direction at the site.  The causes of the 

variations in Figure 40 are not investigated due to the lack of temperature data at 

the sites, which therefore precludes the stability from being evaluated.   
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Figure 40 – Monthly Power Law Exponent 

Regardless of the source of the variations in the shear characteristics at a site, 

they can cause significant effects when short-term data are used for shear 

extrapolation.  Two measurement segments can potentially help average out these 
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variations and provide a better representation of the shear profile at a site than a 

single measurement segment.   

3.2 Choice of Wind Shear Model 

For all of the data analysis, the power law is used exclusively, and the log law is not 

used, despite the fact that the log law performs slightly better in the predictions in Table 

9.  The power law is chosen because the calculation of the power law exponent, α, is 

more robust than the calculation of the surface roughness height, z0.  This can be seen by 

comparing Eq. 54 and Eq. 55.  A singularity occurs in Eq. 55 as U2/U1 goes towards 1.  

No such singularity occurs in the calculation of α.  Figure 41 shows the surface roughness 

height as a function of U2/U1, when h2 = 50 m, and h1 = 30 m.  Clearly, as U2/U1 

approaches 1, a singularity in z0 occurs, and since z0 is in the denominator twice in Eq. 

53, this can cause shear extrapolation using the log law to have widely varying results if 

U2/U1 is close to 1.  Overall, both methods display nearly identical results in many cases, 

but for a few sites this issue in calculating z0 causes difficulty in the shear extrapolation. 
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Figure 41 - z0 versus U2/U1 

3.3 Scenario 1 Analysis 

In scenario 1, a standard met tower, with two measurement heights positioned well 

below a turbine hub height, measures the wind resource at a site for an entire year.  The 

power law exponent that is calculated using the full year of data from the two lower met 

tower measurement heights, h1 and h2, is labeled αL (The subscript “L” indicates that α is 

based on data from the “lower” heights).    

In order to improve the shear extrapolation estimates, a shear correction factor (scf) 

for αL can be calculated using the short-term hub height measurement from the ground-

based device.  The overall goal of shear extrapolation is to accurately estimate the wind 

resource at the turbine hub height.  Ideally, the shear relationship between the wind speed 

at h2, and the wind speed at h3 would be known perfectly.  Since the wind speed cannot 
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be measured at h3 using a met tower, however, this relationship is usually approximated 

with the shear relationship between h1 and h2.  For a variety of reasons, the shear 

relationship between h1 and h2 may differ from the shear relationship between h2 and h3.  

An obvious possibility for a discrepancy is trees and other obstructions, which can reduce 

the wind speed at the lowest measurement height.  In this case, the power law exponent 

that is calculated using data from h1 and h2 is larger than the true value, causing an 

overestimation of the mean wind speed at h3.  There are a variety of other factors that 

could lead to a discrepancy as well, causing either over- or under-prediction of the mean 

wind speed at h3. 

By using a shear correction factor, the aim is to correct for the potentially different 

shear relationships between h1 and h2, and h2 and h3.  While the shear relationship 

between h2 and h3 is only calculated for a short period of time in this Chapter, the hope is 

that the shear correction factor adequately scales the year long power law exponent, αL. 

As stated previously, the highest measurement height tall tower data can be used as a 

proxy for the hub height measurement data from the ground-based device.  The equation 

for the shear correction factor is given in Eq. 56. 

LHscf '/' αα=   Eq. 56 

• scf is the shear correction factor.  

• α'H is the power law exponent calculated using Eq. 54, and the short-term data 

from the ground-based device measurement height and the upper met tower 

height (h3 and h2).  The apostrophe indicates that the power law exponent is based 

on a short-term period of data of length NDays, and the subscript “H” indicates that 

α is based on data from the “higher” heights.  
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• α'L is the power law exponent calculated using Eq. 54, and the short-term data 

from the two lower met tower heights (h1 and h2).  The apostrophe again indicates 

that the power law exponent is based on a short-term period of data of length 

NDays.     

 

The shear correction factor is then used to scale αL, the power law exponent using the 

full year of wind speed data from h1 and h2.  The corrected power law exponent, αC, is 

calculated using Eq. 57. 

LC scf αα ⋅=   Eq. 57 

This method makes no assumptions concerning the nature of the shear profile.  It is 

assumed to be generally applicable to any site, not just those with smooth shear profiles.  

It relies on a single basic assumption; namely, that there is some systematic relationship 

between the shear parameter calculated using the lower two heights, and the shear 

parameter calculated using the higher two heights.  While a power law model is used in 

this case, this approach is applicable to any shear model that relates the wind speed at 

different heights.  

The efficacy of the shear correction factor method is evaluated using the data sets in 

Table 8.  The parameters, NDays and NSeg, are used to investigate the method.  For each 

data set, the following steps are performed: 

1. The total short-term measurement length, NDays, is varied from 10 days to 100 

days in increments of 10 days for Nseg = 1, and from 20 days to 100 days in 

increments on 20 days for Nseg = 2. 
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2. For Nseg = 1, non-overlapping continuous segments of wind speed data are used as 

the short-term measurement data set.  For Nseg = 2, non-overlapping discontinuous 

segments of wind speed data are used as the short-term measurement data set.  

These discontinuous segments are separated by 180 days, and are each half the 

length of NDays.   

If NDays = 20, then there are 18 individual short-term measurement data sets in 

a year, either continuous or discontinuous depending on the value of Nseg.  The 

number of individual measurement segments is labeled n for convenience, and n 

is equal to 365 days divided by NDays (rounded down).  If Nseg = 1, then each of the 

n short-term measurement data sets is a continuous 20 day segment.  If  Nseg = 2, 

then each short-term measurement data set is comprised of two 10 day segments, 

separated by 180 days. 

3. For each of the n short-term measurement data sets, the wind speed data at h1 and 

h2 during the short-term period are used to calculate α'L, and the wind speed data 

from h2 and h3 during the short-term period are used to calculate α'H. 

4. The scf is calculated using Eq. 56. 

5. αC is calculated using Eq. 57.  

6. The estimated mean wind speed at h3, U3
*, is then calculated using αC and Eq. 52 

(where h2 is used as the reference height and U2 is used as the reference wind 

speed).  There are n total predictions.  

7. The percentage error for each of the n estimated values of U3
* is calculated. 

8. Then for each value of NDays, the mean and standard deviation of the percentage 

error are calculated across the n total values of the percentage error.   
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The results of this analysis are the mean and standard deviation of the percentage 

error for the prediction of U3 for each site, for each value of NDays, and for both values of 

NSeg.  The results are presented and discussed below. 

3.4 Scenario 2 Analysis  

In scenario 2, a shorter portable tower with a single measurement height h1 measures 

the wind resource at a site for an entire year.  Thus, the tall tower data from h2 is ignored 

(as opposed to Scenario 1); only the data from h1 and h3 are used.  In this case, a year 

long power law exponent (αL) cannot be calculated, since there is only a single 

measurement height.  Instead, the power law exponent is approximated by calculating its 

value using the data from the ground-based device measurement height and the portable 

tower measurement height during the short-term period in which the ground-based device 

is deployed at the site.  This estimated power law exponent is α'2H.  Again, the apostrophe 

indicates that the power law exponent is based on a short-term period of data, and the 

subscript “H” indicates that α is based on data from the “higher” height.   

The efficacy of the Scenario 2 method is evaluated using the data sets described 

above.  The parameters NDays and Nseg are used to investigate the method.  For each data 

set, the following steps are performed: 

1. The total short-term measurement length, NDays, is varied from 10 days to 100 

days in increments of 10 days for Nseg=1, and from 20 days to 100 days in 

increments on 20 days for Nseg=2. 

2. For Nseg = 1, non-overlapping continuous segments of wind speed data are used as 

the short-term measurement data set.  For Nseg = 2, non-overlapping discontinuous 
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segments of wind speed data are used as the short-term measurement data set.  

These discontinuous segments are separated by 180 days, and are each half the 

length of NDays.  Again, the number of individual measurement segments is 

labeled n, and n is equal to 365 days divided by NDays (rounded down). 

3. For each of the n short-term measurement data sets, the wind speed data from h1 

and h3 are used to calculate α'2H. 

4. The estimated mean wind speed at h3, U3
*, is then calculated using α'2H and Eq. 

52, where h1 is used as the reference height and U1 is used as the reference wind 

speed.  There are n total predictions. 

5. The percentage error for each of the n estimated values of U3
* is calculated. 

6. Then for each value of NDays, the mean and standard deviation of the percentage 

error are calculated across the n total values of the percentage error.   

  

The results of this analysis are the mean and standard deviation of the percentage 

error for the prediction of U3 for each site, for all values of NDays, and for both values of 

NSeg.  The results are presented and discussed below. 

4.0 Results and Discussion 

The results from the analysis for both scenarios are now presented.  The analysis 

yields the mean and standard deviation of the percentage error in the prediction of U3, for 

each data set, and for the ranges of values of NDays and Nseg.  The results are then 

consolidated across all the data sets.  First, the root-mean-square of the mean percentage 

error is taken across all the data sets.  Second, to consolidate the standard deviation of the 
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percentage error for each site, a pooled estimate is used.  The overall pooled standard 

deviation σP, consolidated across the data sets, is calculated using Eq. 58. 

m

m

k
k

P

∑
== 1
σ

σ  
Eq. 58

The root-mean-square of the mean percentage error of the prediction of U3 is a 

measure of the accuracy of the prediction.  It is the average across all ten data sets.  This 

quantity is labeled RMSE(U3), which is a function of NDays and Nseg for both Scenario 1 

and Scenario 2. 

The pooled standard deviation of the percentage error of the prediction of U3 is a 

measure of the uncertainty of the predictions.  This quantity is labeled PSTD(U3).  

“PSTD” stands for the “pooled standard deviation”, where the standard deviation is the 

standard deviation of the percentage error at each site.  PSTD(U3) is a function of NDays 

and Nseg for both Scenario 1 and Scenario 2. 

4.1 Scenario 1 Results 

Scenario 1 utilizes a shear correction factor to adjust the year long power law 

exponent calculated using the met tower data, αL.  From Table 9, the RSME of the 

prediction of U3 without correcting αL is 7.1%.  RSME(U3) for NSeg = 1 and NSeg = 2 is 

plotted in Figure 42, as a function of NDays.  Again, these values are consolidated across 

all ten data sets.  The RSME(U3) value of 7.1% when αL is not corrected is also plotted in 

Figure 42.  This value is not a function of NDays; rather it is included as a comparison to 

the shear results using the method described here. 
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Figure 42 – Accuracy of the Predictions, Scenario 1 

Several comments can be made regarding Figure 42: 

• RMSE(U3) is significantly reduced when using a shear correction factor.  For both 

NSeg = 1 and NSeg = 2, RMSE(U3) is less than 1.0%, for all values of NDays.  This is 

a substantial improvement over the uncorrected value of 7.1%, indicating that the 

shear correction factor drastically improves the accuracy of the prediction of U3. 

• The average value of the percentage error across all data sets and all values of 

NDays is less than 0.2%, indicating that there is almost no bias in the predictions.   

• The results for NSeg = 1 and NSeg = 2 are nearly identical.   

• The value of RMSE(U3) when using the shear correction factor is fairly 

independent of NDays.  This is not surprising, as the average of 36 predictions 

using 10 days of measured data should approximately equal the average of 18 
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predictions using 20 days of data, and so forth (they are not exactly equal due to 

non-linearities in the calculation of α, and other minor factors).  The same wind 

speed data are used in all the predictions, the difference lies only in the averaging 

period.  These results do not imply, therefore, that an arbitrarily small value of 

NDays can be used.  This point is revisited below when the uncertainty of the 

predictions is discussed. 

 

The effect of using a shear correction factor can be highlighted using Figure 43.  It 

indicates that the value of the shear correction factor is less than 1.0 for the six sites in 

Table 9 that over-predict of the mean wind speed, and it is greater than 1.0 for the four 

sites that under-predict the mean wind speed.  This reinforces the logic behind the use of 

the shear correction factor, as it serves to decrease the prediction of the mean wind at 

sites where the mean wind speed is over-predicted, and vice-versa.   
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Figure 43 - Average Shear Correction Factor, NSeg = 1, Scenario 1 

While RMSE(U3) is used to measure the accuracy of the predictions, PSTD(U3) is 

used as a measure of the uncertainty of the predictions.  PSTD(U3) for NSeg = 1 and NSeg = 

2 is plotted in Figure 44, as a function of NDays.   
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Figure 44 – Uncertainty of the Predictions, Scenario 1 

Several comments can be made regarding Figure 44: 

• For both NSeg = 1 and NSeg = 2, the uncertainty in the predictions decreases as NDays 

increases.  Even though Figure 42 indicates that the accuracy of the predictions is 

not affected by the value of NDays, Figure 44 demonstrates that the uncertainty of 

the predictions does in fact depend on NDays.   

• Overall, it appears that higher values of NDays are preferable.  This is a critical 

result, and confirms the initial supposition that longer measurement lengths would 

improve the predictions.  While smaller values of NDays yield accurate predictions 

on average, the variability is high compared to larger values of NDays.  Thus, 

longer measurement lengths are indeed beneficial as it results in lower variability 

in the predictions, and therefore more confidence in an individual prediction. 
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• Some caution should be used in interpreting Figure 44.  The number of samples 

used to calculate the standard deviation decreases as NDays increase.  While there 

are 36 samples used to calculate the standard deviation for a given site when NDays 

= 10, there are only 3 samples when NDays = 100.  Figure 44 is still useful in that it 

indicates the variability in the predictions; there are some limitations, however, in 

using the results to generalize about the uncertainty of the predictions. 

• The uncertainty in the predictions is somewhat lower when NSeg = 2, compared to 

NSeg = 1.  This is to be expected, as the use of multiple short-term measurement 

segments should help average out the variability in the predictions. 

4.1.1 Scenario 1 Individual Site Predictions 

While the shear correction factor is highly effective on average, an actual application 

of this method results in a single prediction for the hub height mean wind speed at the 

site, which may or may not be an improvement over the prediction using only met tower 

data.  It is therefore informative to consider each of the individual predictions for a site.  

This also helps elucidate the magnitude of the uncertainty values shown in Figure 44 by 

demonstrating the scatter in the predictions.   

Figure 45 and Figure 46 show each of the predictions of the mean wind speed at the 

Isabella  and Glenmore sites, respectively, as a function of NDays, for NSeg = 1 and NSeg = 2.  

Also shown in each of the plots are the actual mean wind speed at the site and the 

predicted mean wind speed when only the met tower data are used to make the 

prediction.  Several comments can be made regarding Figure 45 and Figure 46: 

• For Isabella, nearly all of the predicted values of the mean wind speed using the 

shear correction factor are improvements over the predicted value using only met 
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tower data, for NSeg = 1 and NSeg = 2.  The percentage error in the prediction of the 

mean wind speed for Isabella when only the met tower data are used is 4.4%. 

• For Isabella, the standard deviation of the predictions using the shear correction 

factor is approximately 3.2% for NDays = 10, and 1.2% for NDays = 100, when NSeg 

= 1.  When NSeg = 2, the standard deviation of the predictions using the shear 

correction factor is approximately 2.6% for NDays = 20, and 1.9% for NDays = 100.  

The scatter in the predictions is small relative to the error in the prediction when 

only the met tower data are used. 
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Figure 45 – Mean Wind Speed Predictions for Isabella, Scenario 1 

• For Glenmore, few predictions using the shear correction factor are improvements 

over the predicted value using only met tower data, because the percentage error 

in the prediction of the mean wind speed when only the met tower data are used is 
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only 0.5%.  The result is that most of the predictions using the shear correction 

factor are worse than the predicted value using only met tower data.   

• For Glenmore, the standard deviation of the predictions using the shear correction 

factor is approximately 3.0% for NDays = 10, and 1.5% for NDays = 100, when NSeg 

= 1.  When NSeg = 2, the standard deviation of the predictions using the shear 

correction factor is approximately 1.7% for NDays = 20, and 0.6% for NDays = 100.  

• For Glenmore, while the majority of the predictions are worse than the predicted 

value using only met tower data, the small amount of scatter in the predictions 

results in most of the predictions still being close to the true value.     
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Figure 46 – Mean Wind Speed Predictions for Glenmore, Scenario 1 

• The standard deviation of the predictions is slightly less when NSeg = 2, which 

reinforces the logic behind the use of multiple measurement segments. 



 235

 

The shear correction method for Scenario 1 appears to be an effective method for 

improving the accuracy of shear extrapolations, on average.  While there is no guarantee 

that the shear correction method is effective every time it is applied, it is extremely 

effective on average, and produces far more accurate predictions of the hub height mean 

wind speed the majority of the time.  Furthermore, even in situations when this method 

does produce slightly worse predictions, the substantially reduced uncertainty when using 

this method is far more valuable.  That is, this method produces predictions with no bias 

and small scatter, compared to the standard shear predictions, which contained a large 

amount of error and scatter.  While the standard method may produce accurate 

predictions in some cases, the uncertainty in these predictions is large, and there is no 

way of knowing beforehand if the predictions are actually accurate.  Thus, much of the 

value of the shear correction factor method lies in the substantially reduced uncertainty in 

the predictions.   

4.2 Scenario 2 Results 

Scenario 2 uses short-term measurements of the power law exponent to approximate 

the year long power law exponent.  RMSE(U3) for NSeg = 1 and NSeg = 2 is plotted in 

Figure 47, as a function of NDays.  Again, these values are consolidated across all ten data 

sets.  The RMSE(U3) value of 7.1% when αL is not corrected is also plotted in Figure 47.  

This value is not a function of NDays and it is calculated using two measurement heights; 

rather it is included as a comparison. 
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Figure 47 – Accuracy of the Predictions, Scenario 2 

Several comments can be made regarding Figure 47: 

• RMSE(U3) is significantly reduced when using the short-term power law exponent 

to approximate the long-term value.  For both NSeg = 1 and NSeg = 2, RMSE(U3) is 

less than 1%, for nearly all values of NDays.  The uncorrected value is 7.1%.  This 

is a substantial reduction in the error, although less than the reduction in error 

seen in Scenario 1.  This is not surprising, as less information about the shear 

profile is available in Scenario 2. 

• The average value of the percentage error across all data sets and all values of 

NDays is less than 0.2%, indicating that there is essentially no bias in the 

predictions.   
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• RMSE(U3) does not depend strongly on the value of NSeg.  The results are very 

close together for the two values of NSeg.  

• The value of RMSE(U3) is once again fairly independent of NDays.   

 

PSTD(U3) for NSeg = 1 and NSeg = 2 is plotted in Figure 48, as a function of NDays, for 

Scenario 2.  Again, these values are consolidated across all ten data sets.   
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Figure 48 – Uncertainty of the Predictions, Scenario 2 

Several comments can be made regarding Figure 48: 

• For both NSeg = 1 and NSeg = 2, the uncertainty in the predictions decreases as NDays 

increases.  Again, it appears that higher values of NDays are preferable.  (The 

increase in uncertainty between NDays = 90 and  NDays = 100 when NSeg = 1 is likely 
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not a real effect and instead is simply due to the small number of samples for 

large values of NDays.) 

• As is the case for Scenario 1, these results indicate that while smaller values of 

NDays yield accurate predictions on average, the variability is high compared to 

larger values of NDays.  Longer measurement lengths are preferable as it results in 

lower variability in the predictions, and therefore more confidence in an 

individual prediction. 

• The uncertainty for Scenario 2 is higher than the uncertainty for Scenario 1, seen 

in Figure 44, especially when NSeg = 1.  This is not surprising, as less information 

about the shear profile is available in Scenario 2. 

• Once again, some caution should be used in interpreting Figure 48, as the values 

for the standard deviation are often based on a very small number of samples.  

Figure 48 is still useful in that it indicates the variability in the predictions; 

however, there are some limitations in using the results to generalize about the 

uncertainty of the predictions. 

• The uncertainty in the predictions is significantly lower when NSeg = 2, compared 

to NSeg = 1.  This result is in contrast to those shown in Figure 44, in which the 

uncertainty is reduced only slightly due to the use of two short-term measurement 

segments.  In the case of Scenario 2, it appears that using two segments of 

measurement data can cut the uncertainty approximately in half. 

 

Once again, it is informative to consider each of the individual predictions for a site 

using the Scenario 2 method to understand the performance of a single prediction, and to 
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illuminate the scatter in the predictions of the mean wind speed.  Figure 49 and Figure 50 

show each of the predictions of the mean wind speed at the Isabella and Glenmore sites, 

respectively, as a function of NDays, for NSeg = 1 and NSeg = 2.  Also shown in each of the 

plots is the actual mean wind speed at the site and the predicted mean wind speed when 

only the met tower data are used to make the prediction (i.e., no shear correction factor is 

employed).  Again, Figure 49 and Figure 50 are all plotted using the same y-axis scale, in 

order to facilitate comparisons of the scatter in the predictions.  Several comments can be 

made regarding Figure 49 and Figure 50: 

• For Isabella, most of the predicted values of the mean wind speed using short-

term hub height measurements are improvements over the predicted value using 

only met tower data, for NSeg = 1.   

• When NSeg = 2 for Isabella, however, nearly all of the predictions are 

improvements over the predicted value using only met tower data.  Thus, the 

lower uncertainty that results from using two measurement segments results in a 

higher number of improved predictions.      

• For Isabella, the standard deviation of the predictions using the Scenario 2 method 

is approximately 5.5% for NDays = 10, and decreases to 4.3% for NDays = 100, for 

NSeg = 1.  When for NSeg = 2, the standard deviation of the predictions using the 

Scenario 2 method is approximately 3.5% for NDays = 20, and decreases to 1.7% 

for NDays = 100. 

• The uncertainty in the predictions at Isabella is substantially higher than the 

Scenario 1 analysis when NSeg = 1.  When NSeg = 2, the increase in uncertainty in 
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the Scenario 2 analysis is small.  Also, the uncertainty tends to decrease less 

rapidly as NDays increases for Scenario 2.   
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Figure 49 – Mean Wind Speed Predictions for Isabella, Scenario 2 

• For Glenmore, few predictions using the Scenario 2 method are improvements 

over the predicted value using only met tower data, for both NSeg = 1 and NSeg = 2.  

This is due to two factors.  First, the percentage error when only the met tower 

data are used is only 0.5%.  Second, the scatter in the predictions is higher when 

using the Scenario 2 method compared to Scenario 1.  The result is that most of 

the predictions using the Scenario 2 are worse than the predicted value using only 

met tower data.   

• For Glenmore, the standard deviation of the predictions using the Scenario 2 is 

approximately 3.7% for NDays = 10, and decreases to 2.9% for NDays = 100, for 
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NSeg = 1.  When for NSeg = 2, the standard deviation of the predictions using the 

Scenario 2 method is approximately 2.4% for NDays = 20, and decreases to 1.5% 

for NDays = 100.  
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Figure 50 – Mean Wind Speed Predictions for Glenmore, Scenario 2 

• Overall, the scatter in the predictions of the mean wind speed is larger in Scenario 

2, with standard deviations that are often similar to or greater than the actual 

percentage error in the prediction of the mean wind speed when only the met 

tower data are used.  The result is that in some cases, individual predictions of the 

hub height mean wind speed are improvements over the prediction when only the 

met tower data are used, and in other cases they are not.   

• The use of two measurement segments has a much more pronounced effect in 

Scenario 2 than it did in Scenario 1.  The uncertainty in the predictions decreases 
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significantly in most cases when NSeg = 2, and so the predictions tend to be better 

in general when NSeg = 2.   

 

The short-term shear data used in Scenario 2 appears to be an effective method for 

estimating the hub height wind resource, on average.  Compared to Scenario 1, however, 

the uncertainty in the predictions can be significantly higher, resulting in predictions of 

the mean wind speed that are worse than the prediction using just the met tower in many 

cases.  This effect is especially pronounced when NSeg = 1.  Thus, there is no guarantee 

that the Scenario 2 method is effective every time it is applied.  On the other hand, it is 

very effective on average, and produces more accurate predictions of the hub height mean 

wind speed the majority of the time.  Even when the Scenario 2 method does result in 

worse predictions, the magnitude of the error is small.  Lastly, the use of multiple 

measurement segments is especially effective for Scenario 2. 

5.0 Conclusions 

Shear extrapolation is often the most uncertain aspect of wind resource assessment, 

leading to large errors in the estimate of the hub height wind resource and therefore the 

energy production.  This Chapter has presented two methods that can be used to improve 

shear extrapolation predictions.  The specific conclusions of this Chapter are: 

• Short-term measurements from ground-based devices at met tower sites can be 

used to drastically improve the accuracy of shear predictions on average. 

• The uncertainty of the predictions decreases as the short-term measurement length 

increases. 
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• At a site with a standard met tower, with two measurement heights, the number of 

segments of measured data does not affect the accuracy or the uncertainty of the 

predictions appreciably. 

• At a site with a smaller portable tower, with only a single measurement height, 

increasing the number of measurement segments from one to two reduces the 

uncertainty of the predictions substantially, but has no appreciable affect on the 

accuracy of the predictions. 

• The true value in this method lies in the substantially reduced uncertainty that it 

produces in shear extrapolation predictions.  Utilizing this approach allows for 

substantially more confidence in hub height mean wind speed predictions. 

 

More generally, these results demonstrate that hub height wind speed measurements, 

even those that are relatively short in length, can provide valuable information for 

improving the accuracy of wind shear extrapolation.  While this Chapter used the shear 

correction factor method, many other potential methods for utilizing hub height data are 

possible.   

One possible source of error in the method described above is the potential for 

pronounced seasonal variations in the wind shear at time scales longer than the short-term 

hub height measurement length.  For example, at sites with pronounced seasonal stability 

variations, utilizing short-term data may lead to substantial errors, as the corrected shear 

exponent would not be representative of the annual shear characteristics.  Seasonal 

dependent prevailing wind directions coupled with varying topography with direction 
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could also lead to errors.  Future work in this area could look at incorporating these 

seasonal effects, and correcting for the resulting errors.   

On the other hand, the results from the data sets used in this Chapter do not seem to 

indicate that these seasonal effects produce substantial error.  The relatively simple 

methods discussed in this Chapter produce very encouraging results on their own, and 

demonstrate how valuable hub height wind speed measurements are for improving the 

accuracy and reducing the uncertainty in shear extrapolation.  These results are especially 

applicable to situations when the log law or the power law is used for the shear 

extrapolation (as opposed to more complex methods such as numerical models mentioned 

previously).  Because these simple models are so commonly utilized, the results in this 

Chapter are quite relevant. 

6.0 Recommendations 

These results suggest that a reevaluation of the traditional site assessment process 

may be appropriate.  The potential to use of ground-based devices for short-term hub 

height measurements presents a new approach to site assessment.  This new approach 

offers two distinct strategies for site assessment.  

First, whenever the wind resource is evaluated at a site using a standard met tower, 

with two measurement heights, a LIDAR or SODAR should be used to measure the hub 

height wind resource at the site, for some short-term period of time (this obviously 

requires that a LIDAR or SODAR is available).  The methods presented here could be 

especially useful when multiple sites are being assessed simultaneously with met towers, 

and only a single ground-based device is available.  In this case, the ground-based device 

should be brought to each site. 
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Second, the results also offer an alternative monitoring strategy when multiple sites 

must be assessed.  Ground-based devices are expensive, but so are standard met towers.  

Conversely, shorter portable towers are much cheaper and easier to install than met 

towers.  The towers can be used in conjunction with short-term ground-based 

measurements to produce estimates of the hub height wind resource that are substantially 

better than the estimates one would obtain using a standard met tower.  For institutions or 

companies that assess numerous sites concurrently, this new strategy can be employed to 

improve the accuracy and decrease the costs of site assessment.  When this approach is 

taken, the results suggest that two measurement segments should be used to help reduce 

the uncertainty of the predictions.   

In general, for either approach, only a single prediction on the hub height mean wind 

speed is made when these methods are actually applied.  While the results in this Chapter 

show impressive accuracy of the predictions on average for very short measurement 

lengths with a ground-based device, the uncertainty of the predictions for these short 

measurement lengths is significantly higher than for longer measurement lengths.  In 

order to ensure a reasonable level of confidence in the prediction, a longer measurement 

length with the ground-based device is appropriate.  For Scenario 1 with either one or two 

measurement segments, and Scenario 2 with two measurement segments, a 60 day 

measurement length with the ground-based device results in uncertainty less than 2%.  

While there is nothing particularly noteworthy about this value of 60 days, it seems like a 

reasonable benchmark.  A 2% uncertainty due to shear extrapolation is a dramatic 

improvement over the standard method for shear extrapolation, which has a standard 

deviation of 6.5% for the predictions using the data used in this Chapter.  Furthermore, 
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using a 60 day measurement length for the ground-based device enables a total of six 

sites to be evaluated in a single year using a these approaches.   

In the future, one particular aspect of this research deserves further consideration.  

Namely, for what measurement length with the ground-based device would one be better 

off not using a met tower at all?  This question addresses the tradeoff between uncertainty 

due to shear extrapolation when a met tower and the methods described in this Chapter 

are employed, and uncertainty due to a measurement length less than one year when a 

ground-based device only is used for wind resource assessment and so no shear 

extrapolation is needed.  An investigation into these tradeoffs would further illuminate 

how the methods developed in this Chapter can be incorporated into the site assessment 

process. 
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CHAPTER VII  

WIND ENERGY ECONOMIC ANALYSIS 

The estimate of the energy production from a wind farm is one of the primary goals 

of the site assessment process.  However, a decision of whether or not to build a wind 

farm is not possible until an economic analysis is performed as well.  Economic analysis 

of wind energy takes on a variety of forms, ranging from very simple methods to 

advanced financial analyses.  Whenever a wind farm is under consideration, an economic 

analysis of the project is likely. 

This Chapter does not describe any original research, but instead presents a sampling 

of some important aspects of the economic analysis of wind energy and the development 

of a useful tool for economic analysis.  It is divided into two Sections.  First, the 

development of a “Wind Energy Financial Calculator” is described.  This tool provides a 

useful means for analyzing proposed wind energy developments in the United States.  

The analysis methods used in this tool are also described in detail.  Second, some 

interesting new and alternative methods for valuing wind energy, especially in relation to 

other energy sources, are presented.  These particular methods are by no means 

exhaustive; instead this summary is meant to highlight a few particular areas in which 

alternative methods of analysis provide insight or different perspectives on the merit of 

wind energy from an economic perspective.  In general, the topics described in this 

Chapter are especially applicable to the United States, as opposed to Europe and the rest 

of the world. 
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1.0 The Wind Energy Financial Calculator 

The wind energy financial calculator is a general tool for analyzing wind energy 

finances.  The WEFC utilizes cash flow methods for determining the relevant economic 

results.  These cash flow methods calculate the relevant revenues, expenses, debt 

payments, depreciation allowances, subsidies, and tax liabilities in each year of operation 

of the wind farm.  These methods are desirable because they closely mimic the actual 

financial operation of the wind farm, including the specific depreciation allowances and 

subsidies available to wind farms.  While there is no “correct” method for analyzing the 

economics of a wind farm (e.g., payback methods, levelized cost method, EPRI-TAG, 

etc), the cash flow method is similar to how a business or utility would evaluate a 

potential development.  Furthermore, a cash flow method analysis is not particularly easy 

to implement, at least in relation to other methods.  It requires iteration, and so it lends 

itself well to “canned” programs that perform the iterations automatically.   

The specific cash flow analysis methods in the WEFC are derived from the work of 

Wiser and Kahn, in their paper “Alternative Windpower Ownership Structures: Financing 

Terms and Project Costs” [95].  The authors identify three types of ownership structures 

for wind energy development:  Independent Power Producers (IPP), Investor Owned 

Utilities (IOU), and Government Owned Utilities (GOU).  These represent the three 

major categories of wind farm developers, and each has different financial structures, tax 

and subsidy situations, and therefore each requires its own cash flow method.  A more 

detailed description of the important details of each ownership structure follows.  Again, 

the cash flow methods described in this Section are particularly applicable in the United 

States.   
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Lastly, while the descriptions below provide good summaries of the various 

ownership structures and their financial operations, the descriptions are by no means 

exhaustive, or uniformly applicable.  Instead, these descriptions approximate the 

functioning of the most common ownership structures, and are qualitatively similar to 

many developments in the United States.  However, deviations from these structures are 

common, and more complex financial arrangements, such as “Minnesota-Style Flips” and 

others, are used as well.  Also, many states have specific subsidy programs, such as 

renewable energy credits (RECs), which may be incorporated into specific analyses, but 

are not described here.     

1.1 Independent Power Producer   

An IPP is the most common type of wind farm development in the U.S.  IPPs are 

privately owned companies that own and run a wind farm with the goal of making some 

desired return on their equity investment.  IPPs almost always borrow money to help 

finance the project.  The debt fraction is typically on the order of 60-80%, although this 

can vary [95].  The underlying projected cash flows and assets of the specific project 

dictate the terms of the loan; i.e., it is judged on a stand-alone basis.  The lender must 

decide if the project is capable of servicing the debt payments.  Some of the other 

important characteristics of IPPs are: 

• They qualify for the 5-year MACRS accelerated depreciation, and so the 

equipment cost for the wind farm can be depreciated over the first six years of 

operation [96].  

• They can qualify for the production tax credit, or PTC, which is currently valued 

at 1.8 cents per kW-hour.  It is important to point out that the full benefit of the 
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PTC can only be used if the IPP has a tax liability large enough to absorb the full 

subsidy.  For a small company, it is possible that only a fraction of the PTC can 

be utilized, bringing the tax liability to zero. 

• The loan interest rate is higher for IPPs because of perceived risk by the lender.   

• The loan payment type is usually either a constant principal repayment, or a 

constant mortgage style repayment. 

 

The analysis of an IPP uses a cash flow method that yields the after-tax net cash flow 

in each year of operation of the wind farm (an example is shown in the next Section).  

This is the cash flow that would be returned to the equity investors.  The analysis is 

“solved” by using the price of electricity as a variable.  That is, the cash flow is 

dependent on the electricity price, and so the electricity price can be varied to satisfy the 

constraints of the analysis.  The minimum electricity price that satisfies all of the 

constraints is the levelized cost of energy (LCOE).   

Typically, there are several constraints that must be satisfied when analyzing an IPP.  

The most common constraints are: 

• Equity rate of return: The equity investors typically require a certain rate of 

return.  This is ensured by determining the internal rate of return of the cash flows 

and ensuring it is equal to or higher than the required equity rate of return.   

• Debt service coverage ratio: The lenders typically require that the projected 

operating income (revenue minus expenses) is larger than the loan payment by 

some amount in every year of operation.  The ratio of the operating income to the 

loan payment is the debt service coverage ratio (DSCR), and a common 



 251

requirement is that the minimum DSCR across all years of operation is greater 

than or equal to 1.4 [14].   

 

Thus, LCOE can be calculated for a wind farm by adjusting the value so that it is 

minimized and satisfies the imposed constraints.  This process requires some type of 

iteration or root finder to determine the solution. 

1.1.1 IPP Example 

A simple example helps to illuminate the process.  This example closely mimics how 

IPPs are analyzed in the WEFC, except that some simplifying assumptions are made.  

The major assumptions of this example are: 

• Twenty 1.5 MW turbines, operating for twenty years. 

• The capacity factor is 30%, and AEP is approximately 79,000 MWh per year. 

• Installed capital costs (CC) are $36 million. 

• Yearly operating expenses (OE) are $500,000. 

• The loan interest rate (rb) is 8%, the debt fraction (fb) is 60%, and the loan term 

(Nb) is 20 years.  A level mortgage payment is assumed, so that the loan payment 

(LP) each year is $2.2 million, calculated using Eq. 59. 

( ) bN
b

bb

r
rfCC

LP
+−

⋅⋅
=

1/11
  Eq. 59

• The inflation rate is 0%. 

• Tax rate is 40%. 

• The minimum required DSCR is 1.4. 

• The required internal rate of return on equity is 18%. 
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The cash flow sheet for this example is shown in Figure 51.  In Year 0, the capital 

costs are paid by the loan and the equity investment.  In all subsequent years, the wind 

farm operates, generating revenue.  The quantities in each row are calculated as follows. 

• Operating Revenue (OR):  OR = AEP * Price. 

• Operating Income (OI): OI = OR – OE. 

• Loan Balance at Beginning of Year (LBBOY):  In Year 1, LBBOY equals CC *  fb, 

while in all later years it equals the remaining principal from the previous year. 

• Loan Payment: LP is calculated using Eq. 59 and is constant in every year. 

• Interest Payment (IP): IP = LBBOY * rb. 

• Principal Repayment (PR): PR = LP – IP. 

• Remaining Principal (RP): RP = LBBOY – PR. 

•  Debt service coverage ratio (DSCR): DSCR = OI / LP. 

• Total Accelerated Depreciation (TAD): TAD equals the MACRS depreciation 

allowance for a given year multiplied by CC.  For wind turbines, all of the 

depreciation occurs in the first six years of operation. 

• Taxable Income (TI): TI = OI – IP – TAD. 

• Income Taxes (IT): IT equals the tax rate multiplied by the taxable income, TI. 

• Production Tax Credit (PTC): PTC equals AEP multiplied by the value of the 

credit, which is $0.018 per kWh. 

• Tax Savings (TS): TS = PTC – IT. 

• After-Tax Net Equity Cash Flow (CF): CF = OI + TS – LP. 
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Year 0 1 2 5 10 15 20
Price ($/kW-hr) $0.046 $0.046 $0.046 $0.046 $0.046 $0.046

Operating Revenue - OR $3,587,220 $3,587,220 $3,587,220 $3,587,220 $3,587,220 $3,587,220
Operating Expenses - OE $500,000 $500,000 $500,000 $500,000 $500,000 $500,000
Operating Income - OI $3,087,220 $3,087,220 $3,087,220 $3,087,220 $3,087,220 $3,087,220

Financing
Loan Balance at BOY $21,600,000 $21,127,992 $19,473,080 $15,705,776 $10,170,371 $2,037,044

Loan Payment - LP $2,200,008 $2,200,008 $2,200,008 $2,200,008 $2,200,008 $2,200,008
Interest Payment - IP $1,728,000 $1,690,239 $1,557,846 $1,256,462 $813,630 $162,964

Principal Repayment - PR $472,008 $509,768 $642,161 $943,546 $1,386,378 $2,037,044
Remaining Principal - RP $21,127,992 $20,618,224 $18,830,919 $14,762,231 $8,783,993 $0

Debt Service Coverage Ratio - DSCR 1.40 1.40 1.40 1.40 1.40 1.40

Taxes
MACRS Depreciation Allowance (%) 20.0% 32.0% 11.5%

Total Accelerated Depreciation - TAD $7,200,000 $11,520,000 $4,147,200 $0 $0 $0

Taxable Income - TI -$5,840,780 -$10,123,019 -$2,617,826 $1,830,758 $2,273,590 $2,924,256
Income Taxes - IT -$2,336,312 -$4,049,208 -$1,047,131 $732,303 $909,436 $1,169,703

Production Tax Credit - PTC  $1,419,120 $1,419,120 $1,419,120 $1,419,120 $0 $0
Tax savings - TS $3,755,432 $5,468,328 $2,466,251 $686,817 -$909,436 -$1,169,703

Results
After Tax Net Equity Cash Flow - CF -$14,400,000 $4,642,644 $6,355,540 $3,353,463 $1,574,029 -$22,224 -$282,490  

Figure 51 – Cash Flow Example 

To “solve” the cash flow analysis, the price of electricity is varied until it is 

minimized and the two constraints are satisfied.  In this example, the levelized cost of 

energy is $0.0455 per kWh, the DSCR is 1.40, and the internal rate of return of the cash 

flow is 24.5%, as shown in Table 10.  Thus, the DSCR constraint is the active constraint, 

whereas the internal rate on return constraint is more than satisfied.  For different 

assumptions, the active constraint could switch to the required return on equity constraint.   

Levelized Cost (cents/kW-hr) 4.55
Minimum DSCR 1.40
IRR 24.5%  

Table 10 – IPP Example Results 

This example highlights the basic functioning of a cash flow analysis for an IPP.  In 

the WEFC, the solution for the LCOE can be determined for a wider variety on inputs.  

Issues such as property taxes and inflation can be included in the analysis.  Furthermore, 

the WEFC can analyze an IPP when a power purchase agreement has been secured.  In 

this case, the price of electricity is no longer a variable, but instead is a fixed input.  
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To be clear, this price of electricity is referred to as the levelized cost of energy.  The 

terms “price” and “cost” are often incorrectly used interchangeably.  The price of 

electricity calculated in the cash flow method is the price that the IPP must charge to 

satisfy all the necessary requirements.  On the other hand, this price can also be viewed as 

the cost of electricity to the utility that the wind farm sells its power to.  In this way, by 

viewing the price of electricity as the levelized cost of energy, it can be compared on an 

equal footing to the other ownership structures.  In general, one should be precise and 

cautious when using the terms price and cost, as they are not usually synonymous. 

1.2 Investor Owned Utility  

IOU wind farms are owned and operated by a utility instead of by a private owner.  

When IOUs borrow money, it is the income from the entire utility that the loan is based 

on, and not the specific wind farm operations.  Some of the other important 

characteristics of IOUs are: 

• They qualify for the 7-year MACRS accelerated depreciation.  The equipment 

cost for the wind farm can be depreciated over the first eight years of operation.   

• They can qualify for the production tax credit, or PTC, which is currently valued 

at 1.8 cents per kW-hour.  It is almost certain that the IOU can absorb the full 

benefit of the PTC. 

• The loan interest rate tends to be lower than IPPs because of the other assets and 

income streams.  Furthermore, there are no explicit debt service coverage 

requirements, since the company as a whole must pay the debt, not the specific 

wind farm operation. 

• The debt and equity usually make up equal portions of the initial capital outlay.   
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• A straight-line declining rate base principal repayment schedule is used. 

 

The analysis of an IOU uses a revenue requirement model recommended by Wiser 

and Kahn, which is representative of actual utility analysis.  The revenue requirement 

model calculates the yearly revenue that is needed to satisfy all of the expenses and debt 

payments, and that provides a sufficient return to the investors.  Then, a nominal 

levelized cost of energy can be calculated using the estimated energy production in each 

year, and the required revenue figures.  This analysis requires iteration to find the 

levelized cost of energy. 

An example of an IOU cash flow calculation is not included as it behaves 

qualitatively similarly to the IPP example above.  Once again, the WEFC is capable of 

handling a wide variety of inputs for this ownership structure. 

1.3 Government Owned Utility  

GOU wind farms differ greatly from IPPs and IOUs.  GOUs are wind farms run by 

public utilities, such as a town or municipality.  Some of the other important 

characteristics of GOUs are: 

• They are financed by 100% debt, typically via a bond.  The interest rate tends to 

be lower than that of an IPP or IOU. 

• There are no specific debt service coverage requirements. 

• They pay no income taxes, and typically very low property taxes.  Sometimes, 

they provide “payments in lieu of taxes” instead. 
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• They do not qualify for the PTC.  Instead they qualify for the renewable energy 

production incentive, or REPI.  The REPI is more uncertain than the PTC since 

Congress must appropriate the funds for it each year.   

 

The analysis of a GOU requires a simple cash flow model.  The required revenue for 

each operating year is simply equal to the total operating expenses and debt payments 

minus the REPI in each year.  This is not an iterative calculation.  The required revenue 

and the annual energy production can then be used to determine the levelized cost of 

energy of the project. 

1.4 WEFC Features 

The WEFC is created in Matlab using the graphical user interface (GUI) 

functionality.  The WEFC is created to be easy to use, so that a relative novice could 

enter all the inputs into the program, and the program could do all of the calculations.  

The WEFC is then compiled into C-code and turned into an executable file so that it can 

be run on any computer, even those without Matlab.   

The main window of the WEFC is shown in Figure 52.  The user begins by either 

starting a new analysis or continuing a previously saved analysis.  Next, the user must 

choose between the three ownership structures, IPP, IOU, and GOU, which are described 

in detail in the previous Sections.  In the example window shown in Figure 52, an IPP 

ownership structure is chosen.  When an ownership structure has been set, the inputs to 

the analysis can be selected in the four sub-windows that can be opened by pressing the 

buttons under the “Input Categories” label.  These four input categories, and the 

accompanying sub-windows, are “General Inputs,” “Capital Costs and Expenses,” 
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“Financing and Taxes,” and “Economic Inputs and Constraints.”  Each of these 

categories is discussed below. 

 
Figure 52 – WEFC Main Window 

1. General Inputs.  In this sub-window, with an example shown in Figure 53, the 

user sets the general framework of the wind farm such as number of turbines, 
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capacity factor, and project lifetime.  The user can also choose to analyze a power 

purchase agreement for an IPP. 

 
Figure 53 – WEFC General Inputs Sub-Window 

2. Capital Cost and Operating Expense Inputs.  The user sets the inputs that 

determine the total capital cost of the wind farm as well as the yearly operating 

expenses in this sub-window.  An example is shown in Figure 54. 
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Figure 54 – WEFC Capital Costs and Expenses Sub-Window 

3. Finance and Tax Inputs – In this sub-window, the user sets the relevant financing, 

subsidy, tax, and depreciation inputs.  An example is shown in Figure 55. 
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Figure 55 – WEFC Financing and Taxes Sub-Window 

4. Economic Assumptions and Constraints – The user sets some economic 

assumptions, such as discount rate and inflation rate, as well as any requirements 

for the debt service coverage ratio or the cash flows.  In order to account for the 

risk of the project, the user can choose the uncertainty of the AEP estimate, and 

constrain the 10th percentile DSCR to be larger than a certain value [14].  An 

example of this sub-window in shown in Figure 56. 
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Figure 56 – WEFC Economic Assumptions and Constraints Sub-Window 

Once all of the input categories are completed, the program can analyze the particular 

wind farm by pressing the “Run” button in the WEFC main window in Figure 52.  The 

results of the analysis can be seen by pressing the “View Results” button in the WEFC 

main window, which then opens the results sub-window.  This sub-window is different 

for the three ownership structures.  The results sub-window for an IPP example is shown 

in Figure 57.  The results window for the IOU and GOU ownership structure is simpler, 

displaying only the levelized cost of energy and the required price of electricity in each 

year of wind farm operation.   
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Figure 57 – WEFC IPP Results Sub-Window 

The outputs of the program include: 

• The levelized cost of energy. 

• The internal rate of return. 

• For an IPP, the outputs also include the net present value of the project, the 

minimum and average debt service coverage ratio, and the fraction of capital 

supplied by debt that minimizes the cost of energy.   

• A plot of cash flow for an IPP, and of cost of electricity for an IOU or GOU. 
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Sensitivity plots, which show the variation in the economic success of the project as 

various parameters are changed, can be viewed by pressing the “View Sensitivity Plot” 

button in the results sub-window.  An example sensitivity plot is shown in Figure 58. 

 
Figure 58 – WEFC Sensitivity Plot 

The program also has the capability to: 

• Save the inputs from a previous session so that the user does not have to start over 

each time. 
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• Download the cash flow spread sheet.  This can be loaded into Excel to allow the 

user to see first hand how the results are calculated.   

• Provide fairly detailed descriptions of the various inputs and outputs.   

 

Finally, an alternative analysis technique is added to the WEFC.  This method is 

derived from the work of Awerbuch, specifically his paper “Investing in Renewables: 

Risk, Accounting, and the Value of New Technology” [97].  Awerbuch advocates using a 

capital asset pricing model (CAPM) to value all energy production.  The CAPM analysis 

approach is described in detail later in this Chapter in Section 2.2.   

Overall, the WEFC hopefully provides a very useful tool for a user interested in wind 

energy economics.  It is easy to use, and implements the most common and representative 

methods for analyzing the finances of wind energy projects.   

2.0 Alternative Wind Energy Evaluation Methods 

Along with exploring and implementing the standard methods for wind energy 

economic analysis, several alternative methods for valuing wind energy are also 

examined.   Again, this is by no means exhaustive.  Rather, three different methods that 

provide a different perspective on wind energy relative to other forms of electricity 

production are considered.  The three methods are:   

1. External Cost Analysis 

2. Advanced Finance Analysis 

a. Capital Asset Pricing Model 

b. Mean Variance Portfolio Theory 
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3. Energy Balance Analysis 

2.1 External Cost Analysis  

In a perfectly functioning market economy, the market price of a good reflects the 

total production cost of that item.  However, sometimes the total cost of production is not 

reflected by the price.  These additional costs are passed on to third parties, and are 

referred to as “externalities,” or external costs.  They can be viewed as the additional cost 

to society for the production of that good.  By not including these costs in the market 

price of the good, society as a whole pays for the external costs [98].  One of the roles of 

government is to “internalize” these external costs, by means of taxes or subsidies that 

alter the market price to bring it in line with the true cost.   

In particular, there are significant external costs associated with the production of 

electricity, especially from fossil fuels and nuclear energy.  These external costs are due 

to the release of pollutants into the atmosphere, waterways, and soil due to the 

construction and operation of the power plant, as well as the protection of sources and 

supply lines.  These pollutants can cause human health issues, environmental destruction, 

and climate change, as well as many other negative effects.  However, valuing these 

external costs is extremely difficult.  The price of human health and human life, the 

destruction of habitats and pristine environments, and the potential catastrophic damage 

due to global climate change are very difficult to quantify.   

Compared to fossil fuels and nuclear energy, renewable energy and wind energy in 

particular appear to have much smaller external costs.  Hohmeyer is one of the first to 

attempt to estimate the external costs of various types of electricity production [98].  

Using conservative assumptions, he estimates the total social cost of fossil fuels to be 
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between approximately 2 and 5 cents/kWh.  For nuclear energy, the total social cost is 

between approximately 5 and 10 cents/kWh.   

More recently, a European funded commission entitled the “ExternE” project also 

attempts to quantify the external costs associated with energy production [99].  Some of 

the important results are: 

• If external costs are included, the cost of electricity generated from coal and oil 

would double, and the cost of electricity from gas would increase 30%. 

• The external costs of coal are approximately 5 eurocents per kWh.  Gas is 

approximately 2 eurocents per kWh, and wind is approximately 0.1 eurocents per 

kWh. 

 

Thus, the external costs of wind energy are much lower than those of fossil fuel 

generation.  If these external costs are included in the price of electricity (i.e., 

internalized), this would dramatically alter the playing field for wind energy.  In many 

cases, wind energy would likely emerge as the cheapest of all forms of electricity, along 

with hydropower.  In general, considering the external costs of energy production is 

hugely beneficial to renewables, and makes renewable energy sources a compelling 

alternative to traditional fossil fuel generated electricity.  In practice, certain countries 

have attempted to internalize these external costs through various policies and subsidies.  

The feed-in tariff approach, which guarantees a fixed price for generated wind energy and 

is used in many European countries, is one such attempt at internalization.   
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2.2 Advanced Finance Analysis 

Awerbuch writes extensively about the need to apply modern finance theory to the 

analysis of energy production.  He claims that the classic “engineering” economic 

methods for analyzing energy production are outdated and inaccurate [100].  He 

advocates two distinct analysis techniques:  the capital asset pricing model (CAPM) and 

mean variance portfolio (MVP) theory.  These methods are not mutually exclusive; 

rather, they apply to two distinct situations.  CAPM analysis is used for the analysis of 

specific projects, such as a wind farm or coal plant.  MVP is applied when analyzing a 

portfolio of generation, such as a utility or national energy production portfolio.  

2.2.1 Capital Asset Pricing Model 

At its most basic level, CAPM theory simply dictates that market risk is included in 

the analysis of the costs of energy production.  That is, the risk associated with a 

particular cost should dictate the discount rate associated with that cost stream, which 

therefore determines its relative contribution to the total net present value of all the costs.  

In the classical engineering methods, all costs are discounted at the same rate (typically 

the weighted average cost of capital or WACC) regardless of the associated risk of the 

costs.  In the CAPM method, for cost streams that are low risk to the energy producer 

(such as variable O&M, which generally scales with output and therefore with revenue) 

and higher risk to the provider of the O&M services, a high discount rate should be used, 

to reflect the relative risk to each party.  For high-risk costs to the energy producer (such 

as fuel prices for a gas turbine company) a low discount rate should be used [101].  There 

are many simple examples of this phenomenon in his work.  By applying different 
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discount rates to future cost streams, dependent on their level of risk, Awerbuch claims 

that a more accurate estimation of the cost of electricity is achieved.   

One of the consequences of a CAPM analysis for energy production is to drastically 

alter the relative price of wind energy (and photovoltaics) compared to fossil fuels, 

especially natural gas.  The high level of risk associated with future fuel prices causes 

those costs to be discounted at a low rate, and therefore to contribute to the total cost 

more than if they are discounted at the WACC.  The result is that the CAPM method 

generates estimates of fossil fuel levelized costs of energy that are significantly higher 

than traditional estimates.  In one example [97], by using the CAPM method instead of 

using the WACC for all discount rates, the levelized cost of energy of a 200 MW 

combined cycle natural gas plant increases from 2.8 cents/kWh to 4.8 cents/kWh, an 

increase of approximately 70%.  On the other hand, the levelized cost of energy of a 50 

MW photovoltaic installation decreases from 7.8 cents/kWh to 7.2 cents/kWh when 

switching from the standard method to the CAPM method.  This decrease in the cost of 

energy for a photovoltaic installation is due to the low risk of future cost streams.  Like 

photovoltaics, the majority of wind energy costs are fixed upfront costs, and the future 

costs are relatively small and they are low risk.  The result is the CAPM method 

decreases the estimated levelized cost of energy for wind energy (compared to standard 

methods), and this decrease is a function of the low risk inherent in wind energy.  In sum, 

Awerbuch’s use of CAPM analysis, which is the standard in modern financial analysis, 

makes wind energy a much more attractive energy source, especially when it is compared 

to fossil fuel generated electricity. 
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This CAPM method can be utilized for the analysis of wind farms as well.  Three 

discount rates are appropriate: 

1. The Riskless Rate of Return – This is generally equal to the interest rate on U.S. 

Government bonds.  This rate is applied to future costs that are deemed risky to 

the energy producer (and therefore riskless to whomever is collecting on these 

cost streams).  It is also applied to riskless benefits to the producer, such as 

accelerated depreciation, which is risk free.   

2. The Debt Equivalent Discount Rate – This discount rate is applied to future cost 

streams that behave much like debt.  These are fixed costs that must be paid 

unless the company defaults, and therefore they are moderately risky.  This rate is 

used to discount all future fixed expenses, such as fixed O&M and property taxes. 

3. The Cyclical Discount Rate – This discount rate is applied to variable costs.  

Generally, these costs vary with revenue, and therefore are less risky to the energy 

producer.  Therefore a high discount rate is used for these costs.   

 

Using the CAPM method, all future costs are discounted with the appropriate 

discount rate.  The net present value of the costs is then multiplied by the capital recovery 

factor and divided by the annual energy production to produce an estimate of the 

levelized cost of electricity.  This value is fundamentally different from the levelized cost 

of energy calculated using the cash flow sheet.  Neither is inherently better than the other; 

rather, they provide different means of analyzing the financial prospects of a wind farm 

development, and thus both are useful.   
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2.2.2 Mean Variance Portfolio Theory 

Awerbuch also uses mean variance portfolio (MVP) theory to analyze wind energy.  

The CAPM analysis focuses on the cost of energy production for wind energy or fossil 

fuels at the scale of a single power producing entity (i.e. a single power plant or wind 

farm).  MVP analyzes how the addition of a new source of generation affects the 

portfolio-wide performance.  The portfolio could be the generation sources of a utility or 

a region, or even a country.  The question of portfolio performance is therefore very 

interesting and useful for utility planners and policy decision makers, since overall what 

one really cares about in planning electricity development is lowering the overall cost of 

all generation [102]. 

Awerbuch states that most would intuitively believe that the addition of the least cost 

source of new generation would be the best choice every time new generation is needed 

[100].  This is not in fact the case, despite its intuitive appeal.  In fact, the risk associated 

with a new generation source must also be considered when assessing the addition of this 

new source.  Awerbuch points out: “At any given time, some alternatives in the portfolio 

may have high costs while others have lower costs, yet over time, the astute combination 

of alternatives serves to minimize overall generation cost relative to the risk” [100].  The 

result is that in the long-term the addition of a low-risk, but more expensive generation 

source can lower the overall portfolio cost of electricity generation, while the addition of 

higher risk, but cheaper generation can raise the overall portfolio cost.   

Awerbuch uses MVP theory to analyze the contribution of wind energy on a portfolio 

wide scale.  Because wind energy and other renewables are fixed cost alternatives, they 

are relatively low risk, especially compared to natural gas generation, which has high fuel 
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price uncertainty.  Furthermore, the price of wind energy is statistically independent from 

fossil fuel prices, and therefore the costs do not correlate with fossil fuel movements.  

The result is that adding wind energy, even when it is more expensive than the overall 

portfolio cost, can lower the overall long-term portfolio cost because of its ability to 

diversify the generation portfolio and lower the risk of future costs.  Awerbuch presents 

many examples of various portfolios and the change in cost and risk as wind energy is 

introduced.   

The use of MVP analysis reverses a common point of opposition to wind energy, 

namely its large upfront costs.  Because of the large upfront costs, wind energy is 

perceived as a more expensive alternative to fossil fuel generation, which has lower 

upfront costs, but higher fuel costs in the future.  By using MVP analysis, Awerbuch 

portrays the high upfront costs of wind energy as an asset, since it reduces the risk 

associated with uncertain future cost streams of the overall electricity generating 

portfolio. 

2.2.3 Advanced Finance Analysis Summary 

Awerbuch’s work demonstrates that the traditional methods for analyzing energy 

production are systematically biased against wind energy and other renewables.  This is 

manifested in two ways.  First, the traditional methods for estimating the cost of energy 

use the same discount rate for all future costs, ignoring the inherent risk in each cost 

stream.  This causes estimates of fossil fuel generation costs to be lower than is 

warranted, and the estimates of the costs of wind energy to be higher than is accurate.  

Second, decisions for new generating capacity are based solely on the relative cost of the 

stand-alone systems, and not on their affect on the overall portfolio cost.  Because wind 
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energy has large fixed upfront costs, it is relatively low risk, and it does not correlate with 

fossil fuel price changes.  Even if wind energy has higher stand-alone costs than fossil 

fuel generation (and the CAPM analysis makes this assumption very uncertain), the 

addition of wind energy to the generation portfolio can lower the overall portfolio costs in 

the long-term.  This type of global portfolio scale analysis is rarely carried out, which 

therefore biases new generation choices against wind energy.  The adoption of 

Awerbuch’s suggestions to use modern finance theory in energy production decisions 

would greatly enhance the perceived costs and benefits of new wind energy development. 

2.3 Energy Balance Analysis 

Energy production can also be analyzed in terms of its energy balance.  Energy 

balance, sometimes called the energy return on investment (EROI) or energy payback, is 

a relatively simple concept.  The energy balance or EROI is simply equal to the ratio of 

the energy that is produced from a particular source to the total amount of energy needed 

to allow that source to produce energy.  For electricity generation, “the EROI entails the 

comparison of the electricity generated to the amount of primary energy used in the 

manufacture, transport, construction, operation, decommissioning, and other stages of the 

facility’s life cycle” [103].  Energy payback is simply the amount of time it takes for the 

energy produced by the source to equal the amount of energy needed to allow the source 

to produce.  Energy balance is a compelling way to look at energy production.  Because 

energy is often a scarce resource (e.g., fossil fuels), and because energy has such an 

important role in economic growth, the more efficiently primary energy is used to deliver 

energy to society, the better.  This is especially important when global climate change is 

considered. 
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While energy balance is a simple concept, it can be difficult to accurately quantify all 

the energy that goes into a particular energy source.  For a wind turbine, this is the energy 

needed to produce the equipment, transport it to the site, install it, maintain it, and finally 

to decommission it.  Numerous studies investigate the energy balance of modern wind 

turbines.  Lenzen reviews 72 operating turbines, and finds a mean energy balance of 

approximately 16, and a mean energy payback of approximately five months [104].  The 

Danish Wind Turbine Manufacturing Association estimates energy paybacks on the order 

of 80, with payback periods as low as 3 months for a modern Danish 600 kW machine 

[105].  A review of three wind farms in Wisconsin and Minnesota finds energy balances 

ranging between 17 and 39 [106].  Overall, energy paybacks on the order of 3-4 months 

seem to be reasonable estimates for modern turbines.   

Another interesting result of these studies is that the energy balance tends to increase 

with increasing turbine size.  This is due to a number of factors including increased size 

and efficiency of modern turbines and economics of scale [103].  The result is that 

modern turbines have much better energy balances than older turbines, and this trend is 

likely to continue in the future.  Thus, for current modern turbines, energy balances on 

the order of 50-80 seem reasonable.   

This energy balance for wind energy compares very favorably to essentially all other 

forms of energy production, as shown in Figure 59 [103].  Coal, nuclear, solar, and 

hydropower all have energy balances on the order of 5-10, which is significantly less than 

that of wind energy.  While there is some uncertainty in these numbers, it seems clear that 

wind energy compares very favorably to other electricity sources on an energy balance 
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basis.  Furthermore, if one compares energy sources based on their carbon intensity, wind 

energy would likely compare even more favorably.   

 
Figure 59 – Energy Return on Investment (EROI) for Various Energy Sources 

2.4 Alternative Wind Energy Evaluation Methods Conclusions 

The preceding is a summary of three alternative methods for analyzing wind energy 

and energy production.  A common theme of these three methods is that wind energy 

performs well relative to other forms of energy production in each framework.  The 

external costs of wind energy are significantly lower than most energy sources, and the 

energy balance is possibly the best of any source.  Furthermore, modern finance theory 

can be used to remove bias from the analysis of wind and other energy sources, which 

greatly strengthens the case for wind energy.  Overall, these alternative methods provide 

compelling motivations for increased production of energy from wind turbines. 
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3.0 Conclusions 

This Chapter presents both the development of a tool for analyzing the economics of 

wind energy, and three alternative methods for evaluating wind energy.  Presently, these 

two subjects are quite distinct in a practical sense.  The methods used in the WEFC 

represent the status quo approach to analyzing wind energy economics from a 

developer’s perspective.  On the other hand, the alternative evaluation methods have 

varying degrees of acceptance in the mainstream.  That is, these approaches have not 

been generally adopted or incorporated into the way that wind energy and other 

renewables are evaluated.  In European countries, where the Kyoto Protocol is adopted, 

the external costs of energy production are considered, and a carbon trading system is 

now in place.  In the United States, no such evaluation has been made.   

External mechanisms are needed to incorporate these alternative evaluation methods 

into the mainstream, which may eventually alter the status quo method of analyzing wind 

energy development, exemplified by the WEFC.  As awareness of global climate change 

increases, governments may decide to attempt to internalize the external costs of energy 

production.  This decision may be reinforced by issues of energy independence and 

security.  In the United States, the result may be a carbon tax or carbon trading scheme, 

or some other mechanism for promoting energy sources with low external costs or high 

energy balances.  The net effect of these policies would be to generate additional costs to 

energy sources that generate a large amount of carbon or with low energy balances, or 

both.  These costs would then have to be incorporated into the analysis of any new energy 

production development.  In the case of wind energy, these new costs would likely be 

quite small. 
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Likewise, external mechanisms may lead to the advanced financial methods 

becoming more common means of analyzing wind energy and other energy 

developments.  If utilities, system operators, or governments begin to confront fuel price 

risk and volatility, then these approaches are needed to account for the varying degrees of 

risk among different sources of energy.  In this case, the status quo approach to analyzing 

wind energy and other energy projects would be drastically altered. 

No matter what, a drastic change in the analysis of wind energy and other energy 

sources is likely dependent on external mechanisms which would force the status quo 

methods to be abandoned or altered.  If these changes take place, it appears that wind 

energy development would benefit substantially.   
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CHAPTER VIII  

THE STREAMLINED SITE ASSESSMENT METHODOLOGY 

The research and tools developed in Chapter III through Chapter VII encompass a 

variety of wind energy site assessment analysis techniques and wind resource 

measurement strategies.  While the research presented in each Chapter can stand alone as 

an independent subject, the topics comprise one broad strategic approach to wind energy 

site assessment.  This approach has been dubbed the “Streamlined Site Assessment 

Methodology” or SSAM.  The goal of SSAM, which is a unification of the various 

research subjects and tools presented, is to provide a flexible and comprehensive 

methodology for executing the site assessment process in which the specific priorities and 

constraints of the project dictate the approach that is taken.   

1.0 SSAM Description 

This Section presents a detailed description of the SSAM framework, which is shown 

graphically in the flow chart in Figure 60.  A description of the various choices and paths 

in Figure 60 that can be taken in the SSAM approach is now provided.  In Figure 60, the 

yellow boxes indicate processes or analyses, and the green diamonds indicate decision 

points.    

When the site assessment process commences, the first choice encountered is whether 

to use a met tower or a ground-based device, such as SODAR or LIDAR, as the primary 

method for wind resource measurement.  This is the first decision point in Figure 60, 

“Install Met Tower”.  This decision is the most general in SSAM, as it dictates the course 

of the rest of the site assessment. 
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Figure 60 – SSAM Flow Chart 

1.1 The Ground-Based Device Site Assessment Option 

If a ground-based device is chosen as the primary wind resource measurement device, 

then the path to the left of the first decision point in Figure 60 is taken.  This is the “No” 

branch of the “Install Met Tower” decision point.  Once a ground-based device is chosen, 

a second decision point is reached, labeled “Strategy Decision” in Figure 60.  This 
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decision determines what strategic approach is taken for wind resource measurement 

using a ground-based device.  Three possible strategies that utilize a ground-based device 

are possible: 

• Continuous Measurement for 1 Year.  The first possible strategy for ground-based 

device measurement is to simply measure the wind resource at the site for an 

entire year, satisfying the priority of obtaining a full year of measured data.  This 

approach is similar to the traditional site assessment method, except that a 

ground-based device is used in lieu of a met tower.  Relative to the traditional site 

assessment method, this approach has the advantage that the wind resource can be 

measured at the hub height of a wind turbine, which is usually not possible when 

using a met tower, as discussed in Chapter I.  This strategic approach ensures that 

seasonal variations in the wind resource are captured in the measured data, which 

may be an important if minimizing the uncertainty in the estimate of the wind 

resource is a priority.  On the other hand, this approach requires that the ground-

based device is deployed at a single site for the entire year, precluding it from 

being used anywhere else, regardless of the quality of the wind resource at the 

site. 

• The Round Robin Site Assessment Strategy.  If a primary priority of the site 

assessment campaign is the measurement of multiple sites in a single year, then 

the round robin strategy can be employed.  This strategic approach is only 

possible if the sites are relatively near by each other, as the ground-based device 

is transported back and forth between sites over the course of one year.  This 

approach is described in detail in Chapter V, and the results indicate that it is a 



 280

highly effective method of measuring multiple sites in a year using a single 

ground-based device, without a significant sacrifice in accuracy or uncertainty 

that usually would accompany measurement lengths less than one year.   

• Objective Decision Making.  The final strategic choice when using a ground-

based device is the objective decision making approach described in Chapter IV.  

In this approach, the wind resource is measured in segments, and after each 

segment a decision is made whether to stop measurement and build a wind farm, 

stop measurement and not build a wind farm, or continue measurement.  This 

approach is likely to be implemented when the rapid evaluation of a site is a 

primary priority.  In these cases, the objective decision making approach is an 

effective method for drastically reducing the required measurement time, on 

average.  It should be pointed out that the analysis in this approach depends on the 

economic parameters of the wind farm, and so it should be used when those 

parameters are well known or at least closely approximated.  Furthermore, the 

objective decision making strategy and the round robin strategy are potentially 

complementary approaches that can be used in parallel.  In this case, the objective 

decision making approach would be utilized after each round robin segment of 

measured data.  While these data segments are discontinuous, the objective 

decision making framework is still applicable and is implemented in the same 

way.  Finally, as depicted in Figure 60, the objective decision making can also be 

utilized when a met tower is used as the primary method for wind resource 

measurement.  This possibility is discussed later. 
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1.2 The Met Tower Site Assessment Option 

If a met tower is chosen as the primary wind resource measurement device, then the 

path to the right of the first decision point in Figure 60 is taken.  This is the “Yes” branch 

of the “Install Met Tower” decision point.  Once a met tower is chosen, a second decision 

point is reached, labeled “Utilize Ground-Based Device” in Figure 60.  This decision 

determines whether or not a ground-based device is used to supplement the primary wind 

resource measurement using the met tower.  Two approaches are therefore possible, 

“Yes” and “No”: 

• Yes, utilize a ground-based device.  For this approach, a ground-based device is 

used as a supplement to the met tower, by measuring the hub height wind 

resource for short-term period of time with a ground-based device, and applying 

the short-term shear measurement strategy.  In this approach, short-term hub 

height wind resource data are used to adjust the estimate of the wind shear 

characteristics at the site.  This approach is presented in Chapter VI, and is highly 

effective at improving the accuracy and decreasing the uncertainty in hub height 

mean wind speed estimates.  The ground-based device can be deployed at the site 

for as little as a few days, although the uncertainty in the hub height wind 

resource estimate decreases as the ground-based device is deployed for longer 

periods of time.  Overall, when a ground-based device is available for short-term 

deployment, this strategy is extremely useful.   

• No, do not utilize a ground-based device.  In this case, a ground-based device is 

not utilized as a supplement to the met tower measurement.  
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As discussed in Chapter IV, it is possible to utilize the objective decision making 

strategy when a met tower is used to measure the wind resource.  Thus, for either of the 

two branches of the “Utilize Ground-Based Device” option, another decision point is 

reached.  This decision point is the “Utilize Objective Decision Making” green diamond 

in Figure 60.  Two approaches are therefore possible, “Yes” and “No”: 

• Yes, utilize the objective decision making strategy.  This approach is described in 

Chapter IV, and may also be used when a ground-based device is the primary 

method for measuring the wind resource, as described in previously in Chapter 

VIII, Section 1.1.  In this approach, the wind resource is measured in segments, 

and after each segment a decision is made whether to stop measurement and build 

a wind farm, stop measurement and not build a wind farm, or continue 

measurement.  This approach is likely to be implemented when the rapid 

evaluation of a site is a primary priority.  While it is more likely that this approach 

would be used when a ground-based device is the primary method for measuring 

the wind resource, it can be used in this situation as well.  Finally, it is possible to 

use this approach in conjunction with the short-term shear strategy described in 

Chapter VI.  In this case, a ground-based device would also be brought to the site 

to measure the hub height wind speed for some short-term period of time.  This 

additional information may help reduce the uncertainty in the estimate of the hub 

height wind resource, and therefore accelerate the decision making process.     

• No, utilize the objective decision making strategy.  In this case, the traditional 

approach to wind energy site assessment is performed.  This approach is 

discussed in detail in Chapter I, including two major drawbacks: the required 
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measurement length and the low measurement height.  Nonetheless, this approach 

is by far the most common in the United States right now.   

1.3 Uncertainty and Economic Analysis 

Wind resource measurement can take a variety of forms, using either a ground-based 

device or a met tower, and with a variety of possible strategies within these two 

approaches.  Regardless of the approach taken, the uncertainty analysis techniques 

developed in Chapter III are utilized next to determine the uncertainty of the wind 

resource estimate and the energy production estimate.  This is depicted in Figure 60, as 

all the paths converge at the “Site Assessment Uncertainty Analysis” process.  While the 

material presented in Chapter III focused specifically on the traditional site assessment 

process in some cases, the majority of the techniques and methods developed in Chapter 

III are general, and can easily be applied to alternative scenarios that utilize ground-based 

devices.   

Finally, the last step in the SSAM process is an economic analysis, which is depicted 

in Figure 60 as the “Wind Energy Economic Analysis” process after the “Site 

Assessment Uncertainty Analysis” process.  A commonly used and detailed approach to 

wind energy economic analysis utilizing cash flow sheets is described in detail in Chapter 

VII.  This is a fairly general approach which can be applied to a variety of wind farm 

developments and ownership structures, and is independent of the measurement 

technique and strategy used to evaluate the wind resource.   
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1.4 SSAM Approach Summary 

The above provides a description of the SSAM framework, which is comprised of the 

strategies, analysis techniques, and tools that are developed in this dissertation.  The 

priorities, constraints, and goals of a given project dictate the particular path, and 

therefore the particular measurement configuration, measurement strategy, and analysis 

methods utilized in the site assessment process.  SSAM is therefore a flexible process, 

utilizing both traditional site assessment methods and alternative approaches to site 

assessment.  In particular, SSAM encompasses several techniques that utilize ground-

based devices, which are potentially extremely effective substitutes to the standard 

method of site assessment, and can result in more rapid development, more accurate and 

certain results, or both.  

2.0 SSAM Software  

The SSAM approach, described above and depicted graphically in Figure 60, is 

implemented into a software program.  The goal is to create a flexible and detailed tool 

that can effectively implement all aspects of the SSAM approach, and that can then be 

applied to specific site assessments.  Each of the strategies and analysis methods 

developed in the SSAM approach are incorporated into this program.  The SSAM 

software is created in Matlab, using the graphical user interface (GUI) functionality.  The 

SSAM software is then compiled into C-code and turned into an executable file so that it 

can be run on any computer, even those without Matlab.   
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This Section describes the SSAM software in detail, providing descriptions of the 

inputs, processes, and outputs of the software.  The SSAM main window, the four major 

sub-windows, and some important features of the software are now presented. 

2.1 SSAM Main Window 

A view of the SSAM main window is shown in Figure 61.  When the SSAM software 

is first opened, the user begins in the “Select Analysis” section, and chooses between 

starting a new analysis and continuing a previous analysis.  At any point, the user can 

press the “Start Over” button and begin again.  In Figure 61, the previous analysis 

“test_IPP.mat” is being continued. 

Next, the user moves to the “Primary Wind Resource Measurement Technique” 

section of the main window, as shown in Figure 61.  This choice corresponds to the first 

choice in the flow chart of SSAM in Figure 60.  In the SSAM software, the user likewise 

chooses between a met tower and a ground-based device, which are the right and left 

branches of Figure 60, respectively.  For the “test_IPP.mat” example in Figure 61, a met 

tower is selected. 

Finally, the user may now begin defining the inputs of the site assessment and 

running the analyses that are used to generate the results.  This occurs in the “Inputs and 

Analysis” section of the main window.  There are four main categories of inputs and 

analysis, and each of these is described in the next Sections. 
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Figure 61 – SSAM Main Window 

2.2 Configuration and Strategy Window 

In the “Configuration and Strategy” window, the general configuration inputs are 

chosen.  The window for a met tower based site assessment is shown in Figure 62, and 

the window for a ground-based device site assessment is shown in Figure 63. 
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Figure 62 – Configuration and Strategy Window for Met Tower 
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Figure 63 - Configuration and Strategy Window for Ground-Based Device 

The inputs in these windows include the number of turbines, the turbines’ hub 

heights, and the project length.  The configuration of the wind resource measurement is 

also selected, including the height of each measurement.  Finally, when a met tower is 

used for the wind resource measurement, the option to use the short-term shear strategy is 
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available.  This can be seen in Figure 62, and corresponds to the “Utilize Ground-Based 

Device” choice in the right branch of Figure 60.  When a ground-based device is used for 

the wind resource measurement, then the option to use the objective decision making 

strategy is available.  This can be seen in Figure 63, and corresponds to the “Strategy 

Decision” choice in the left branch of Figure 60.  There is no option to use the round 

robin strategy in this window, as it only requires using a discontinuously measured data 

set. 

2.3 Wind Resource Evaluation Window 

Once the configuration and strategy are determined, the “Wind Resource Evaluation” 

window can be selected.  In this window, shown in Figure 64, the process of utilizing 

measured data to estimate the long-term hub height and location wind resource is carried 

out.  There are four more sub-windows in which this process is performed, and a 

summary of the results is also shown in the “Wind Resource Evaluation” window in 

Figure 64.   

The process begins by loading the measured data in the “Measured Data Set” sub-

window.  Next, the long-term wind resource can be estimated in the “Measure-Correlate-

Predict” sub-window, in which long-term reference site data can be loaded and the 

Variance Ratio MCP algorithm is used.  The long-term resource is then extrapolated to 

hub height (when applicable) in the “Wind Shear” sub-window.  The wind shear 

characteristics at the site can either be calculated from data from a lower measurement 

height, or manually fixed to a certain value.  Finally, the wind resource at each turbine 

can be adjusted in the “Topographic Correction” sub-window.  This sub-window allows 

for simple scaling factors to be used to adjust the estimated long-term hub height Weibull 
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parameters at each turbine.  There is no flow modeling capability.  Instead, the outputs of 

flow modeling can be utilized for the topographic correction.  The end result of the 

“Wind Resource Evaluation” window is an estimate of the long-term hub height and 

location wind resource. 

 
Figure 64 – Wind Resource Evaluation Window 

2.4 Energy Production and Uncertainty Window 

The energy production and the uncertainty of the energy production can be 

determined next, once the wind resource evaluation is complete, by selecting the “Energy 

Production and Uncertainty” window from the SSAM Main Window.  The “Energy 
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Production and Uncertainty” window is shown in Figure 65.  There are three sub-

windows that are used to determine the final energy production and uncertainty results; 

these results are also summarized in the bottom of the “Energy Production and 

Uncertainty” window in Figure 65. 

 
Figure 65 – Energy Production and Uncertainty Window 

The analysis in the “Energy Production and Uncertainty” window begins by choosing 

the power curve of the wind turbines in the “Power Curve” sub-window.  The power 

curve can either be chosen from a database of wind turbine power curves, or the data can 
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be loaded manually from a text file.  Next, the energy loss factors are set and then the 

energy production and capacity factor are calculated in the “Energy Production” sub-

window.  Finally, the uncertainty of the energy production is determined in the 

“Uncertainty Analysis” sub-window, which implements the uncertainty analysis 

techniques developed in Chapter III.  The results of all the analyses are displayed in the 

summary section of the “Energy Production and Uncertainty” window. 

The “Energy Production and Uncertainty” window corresponds to the “Uncertainty 

Analysis” process from the SSAM framework shown in Figure 60.  That is, this process 

occurs after the wind resource evaluation is complete, and is generally applicable to all 

possible monitoring strategies. 

2.5 Economic Analysis Window 

Finally, an economic analysis of the project can be performed by selecting the 

“Economic Analysis” window in the SSAM main window shown in Figure 61.  The 

“Economic Analysis” window, which is shown in Figure 66, also corresponds to the final 

process in the SSAM framework shown in Figure 60.  In the “Economic Analysis” 

window, an economic analysis of the wind farm is carried out, and this analysis is based 

on the material described in Chapter VII.  In fact, the “Economic Analysis” window is 

simply the Wind Energy Financial Calculator, which is described in detail in Chapter VII.  

The only modification is that many of the inputs to the economic analysis are already 

determined in previous windows in the SSAM software.   
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Figure 66 – Economic Analysis Window 

An example results window of the “Economic Analysis” window is shown in Figure 

67.  These results are for an IPP ownership structure, and a wind resource evaluation 

using a met tower.  The results windows when other ownership structures are used, or 

when the objective decision making strategy is used, are somewhat different than that 

shown in Figure 67, but provide similar results and information. 
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Figure 67 – SSAM Economic Results 

2.6 Important SSAM Features 

Other notable features of the SSAM software include: 

• The ability to save a previous analysis, and then load it at a later point. 

• The ability to save the cash flow sheet for the particular economic analysis in a 

text file, which can be read into a spreadsheet. 

• The ability to view sensitivity plots for the primary economic parameters, which 

demonstrate the effect of changing these parameters on the important economic 

results. 
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3.0 SSAM Conclusions 

Overall, the SSAM approach provides a new framework for wind energy site 

assessment, with multiple potential analysis methods and strategic approaches.  Many of 

the new approaches have the potential to significantly improve the site assessment 

process from an accuracy, uncertainty, and financial perspective.   

The SSAM software allows for the SSAM framework to be executed, as all of the 

various strategic choices are incorporated into the program, presenting the user with a 

wide variety of approaches to wind energy site assessment.  While the program is very 

flexible and allows for a wide range of inputs and analysis techniques, it also automates 

many of the difficult and cumbersome processes such as MCP and cash flow analysis, 

and therefore accelerates the site assessment analysis process.  The combination of this 

new and improved approach to site assessment with a software tool that implements this 

approach hopefully allows for advancement in the way wind energy site assessment is 

carried out. 
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CHAPTER IX  

CONCLUSIONS 

1.0 Summary 

This research explores a new approach to wind energy site assessment.  The 

traditional method of site assessment, while extremely common in its use, is inhibited by 

the use of a met tower for wind resource measurement, which results in long 

measurement periods and potentially inaccurate estimates of the wind resource.  The 

streamlined site assessment methodology presented in this research provides a broader, 

more flexible, and often improved approach to wind energy site assessment.  The SSAM 

framework encompasses a variety of possible approaches, and the particular approach 

taken can be selected based on the priorities, constraints, and goals of the site assessment.  

This methodology can drastically alter the way that wind energy site assessment is 

conducted.  The resulting approach provides: 

• Better characterization of uncertainty. 

• Efficient and more rapid decision making. 

• Improved evaluation of multiple sites in a single year. 

• Reduced uncertainty and improved accuracy when evaluating a single site. 

 

The following summarizes the important methods and contributions developed in this 

dissertation. 

• Uncertainty Analysis in Wind Energy Site Assessment (Chapter III).  This work 

produces two major contributions.  First, a comprehensive survey of the 
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uncertainty sources that arise in traditional wind energy site assessment is 

conducted.  The survey explores the most common and important uncertainty 

sources in detail, and provides approximate values for all of the sources when it is 

appropriate.  This research provides a useful and thorough summary of 

uncertainty sources in traditional wind energy site assessment.  Second, a rigorous 

mathematical method for combining uncertainty sources in the site assessment 

process is developed.  Specifically, this work develops methods for determining 

the wind resource uncertainty, and then combining all of the major uncertainties 

to get an overall uncertainty of the energy production.  Explicit functions for the 

Weibull parameter sensitivity functions are derived, and so the sensitivity factors 

can be calculated exactly instead of assumed.  These methods for combining 

uncertainty sources are general, and can be applied to any type of wind resource 

measurement approach, not just the traditional method using a met tower.  

Overall, the research presented in Chapter III contributes an improved method of 

handling uncertainty analysis in wind energy site assessment, for both traditional 

and alternative approaches to the process. 

• The Objective Decision Making Strategy (Chapter IV).  Measuring the wind 

resource for a full year allows for seasonal variations in the wind resource to be 

captured, and so more accurately estimates the long-term wind resource at the 

site.  At many sites, however, a decision of whether or not to build a wind farm is 

possible well before a year of measurement is complete, despite the larger 

uncertainty.  This could be due to either a very good or very bad wind resource.  

The research in this Chapter develops a decision making approach to wind 
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resource monitoring, which allows for an objective decision of whether or not to 

build a wind farm, or to continue measuring the wind resource, at any point in the 

measurement process.  This method is highly effective, with the accuracy of the 

decisions comparable to that of a full year of measurement.  It also results in a 

substantial monetary savings due to decreased monitoring costs and more rapid 

development of wind energy. 

• The Round Robin Site Assessment Strategy (Chapter V).  This technical approach 

for wind resource measurement entails measuring the wind resource at multiple 

nearby sites in a single year, by transporting a ground-based device back and forth 

between the sites over the course of the year.  This results in a discontinuous 

measured data set.  The results indicate that this strategy is an effective method of 

increasing the number of sites that can be measured in a single year, without the 

significant sacrifice in accuracy and uncertainty that usually accompanies 

measurement periods less than one year.  An added advantage of this approach is 

that the ground-based device measures the wind resource at hub height, obviating 

the need for shear extrapolation.  The result is that the round robin strategy may 

produce both more accurate estimates of the wind resource, while also doubling 

or tripling the number of sites that can be measured in a single year. 

• The Short-Term Shear Measurement Strategy (Chapter VI).  Shear extrapolation 

is often the largest source of uncertainty when estimating the wind resource at a 

site.  This strategy aims to improve the accuracy of shear extrapolation by 

augmenting one year of measured data from a met tower with a short-term period 

of measured data from a ground-based device.  For a variety of reasons, it may be 
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necessary for a met tower to be installed at a site, or a ground-based device may 

not be available for an entire year.  This strategy helps mitigate the inherent 

drawbacks of using a met tower.  The results of this analysis indicate that this 

strategy is extremely effective at improving the accuracy and reducing the 

uncertainty of hub height wind speed estimates, even when only a short-term 

amount of hub height data are available.  Overall, this strategy is easily 

implemented and should be used uniformly when a met tower is installed at a site 

as the primary method of wind resource measurement. 

• Wind Energy Economic Analysis (Chapter VII).  An economic analysis of a wind 

farm is necessary to determine the economic performance and financial success.  

This Chapter has two main contributions.  First, it describes the development of a 

Wind Energy Financial Calculator, which is a tool used for analyzing wind energy 

developments.  The WEFC utilizes cash flow methods to perform the economic 

analysis, and the entire program is created with a graphical user interface.  

Second, interesting new and alternative methods of evaluating wind energy are 

presented.  Specifically, modern finance theory based on CAPM and MVP 

techniques, external cost analysis, and energy balance analysis are investigated 

and described.  The unifying theme when using these three approaches is that the 

relative value of wind energy, and renewable energy in general, is improved 

relative to traditional sources of energy.  It implies that the traditional methods of 

valuing energy are biased against wind energy, and that new methods should be 

encouraged so that the true value of wind energy is captured and quantified.   
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• The Streamlined Site Assessment Methodology (Chapter VIII).  The research and 

tools developed in Chapter III – Chapter VIII are synthesized into an overarching 

site assessment framework, dubbed the “Streamlined Site Assessment 

Methodology”. This approach provides a flexible and comprehensive set of 

strategies and analysis techniques that can be used to improve wind energy site 

assessment in a variety of ways.  This Chapter describes the SSAM framework 

and how the priorities and constraints of a particular site assessment dictate the 

particular strategies and techniques that are utilized.  A SSAM software tool is 

also described, which incorporates all of the aspects of SSAM into a software 

program that can be used for actual applications.  This tool is very general and can 

be applied to a wide variety of situations.  Overall, this Chapter summarizes and 

fuses the previous research into a general strategic approach that can drastically 

alter and improve wind energy site assessment. 

2.0 Recommendations 

The methods that constitute the SSAM approach have been tested and validated using 

a large amount of actual data.  The ability of SSAM to improve the wind energy site 

assessment process appears to be assured.  On the other hand, many of these methods 

entail significant deviations from the traditional approach to wind energy site assessment.  

They are likely to experience resistance, as they represent a new and unknown approach.  

The ability to secure a loan for a wind energy development depends strongly on the 

lender’s confidence in the estimates of the energy production and financial success, and 

therefore in the estimates of the wind resource at the site.  Regardless of the performance 
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of the methods, they will not be employed if their use results in a rejection from a lender.   

Furthermore, in many cases the methods utilize a ground-based device, and in order for 

the methods to achieve acceptable performance, these devices must produce 

measurements with accuracy and precision comparable to that achieved using the 

traditional approach to wind speed measurement.  The potential hesitancy to adopt this 

new methodology, while not surprising, would represent a significant missed opportunity 

to save both time and money in the site assessment process. 

In the short-term, the SSAM approach may not be generally adopted.  The likely early 

adopters may be institutions or developers who do not require substantial loans for wind 

farm developments.  For example, government sponsored resource assessment 

campaigns, which then finance turbine purchases for towns or municipalities, are 

potential early adopters of the SSAM approach.  In these cases, there is no risk-averse 

lender to satisfy, and the goals of the development may be broader than simply financial 

profit and instead include energy production diversification, increased use of renewable 

energy in the region, and rapid development.  The SSAM approach is well suited to these 

situations, as it offers a means of accelerating the site assessment process.   

In the long-term, as experience with this approach is gained, a wider variety of 

potential developers may consider adopting some or all of the SSAM approach.  The 

results presented here show substantial promise, and the motivation to achieve these 

results in practice is compelling.  It is hoped that this research will serve as the basis for 

an evolution in the way wind energy site assessment is conducted, with the resulting 

approach providing significant improvement over the traditional site assessment process. 
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