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ABSTRACT

This paper describes the latest preliminary performance (or screening) model developed for
hybrid wind/diesel systems at the University of Massachusetts. The corresponding computer
code (Wndscreen3) allows one to rapidly evaluate the performance of wind/diesel systems with
one or more identical multiple wind turbines, one or more identical diesels, with or without
energy storage. In addition to an overview of this model, the paper presents two examples of its
use, including a comparison of performance results with Hybrid2, a detailed model for hybrid
system performance modeling.
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INTRODUCTION/ BACKGROUND

At the present time, the designer of hybrid wind energy systems has the choice of a number of
performance simulation models for such systems. The magjority of these models and their
resulting computational codes, however, are quite detailed, require alarge number of input
variables, and take some time to obtain the desired performance prediction results.  Thus, there
is aneed for simplified models/’computational codes that can be used to obtain preliminary (or
screening level) system performance results. The objective of this paper isto present such a
model, developed for the preliminary performance prediction of ssimple wind diesel hybrid
systems. The modeled hybrid system consists of one or more identical multiple wind turbines,
one or more identical diesels, and may contain energy storage. The analytical basis of the model
is based on a combination of previous University of Massachusetts hybrid systems model
developed for no storage and storage hybrid wind diesel systems. The no storage case is based on
the use of statistical methods. For the case of storage systems (which assume an ideal storage,
i.e., no losses), synthetic load and wind data may be generated using a Markov process method.
For load generation and wind speed modeling, this method results in atime series with a
specified mean, standard deviation, autocorrelation and specified lag, and probability density
function. Also, adiurnal sinusoidal variation, starting at a specific hour, may also be imposed.

The paper also demonstrates the use of the resulting computational code (which is readily
available on the Internet) that requires a small number of input variables, is user friendly, and
features a graphical interface. This code can also be used to model an autonomous wind/ battery
system. In addition to a description of the model and resulting code, the paper gives the results
of sample calculations for a number of representative hybrid wind diesel systems and a
comparison of these results using Hybrid2, a detailed model for hybrid system performance
modeling.



ANALYTICAL MODEL SUMMARY

This analytical model of awind/diesel system, following the example of an earlier screening
model (Manwell and McGowan, 1995), is designed to be applied over periods of time when the
wind resource and load are uncorrelated. 1n practice, thisisthe case for seasonal or monthly
case studies. Thus, a complete year can be comprised of a number of model runs. The following
summary presents an overview of the basic subcomponent model assumptions, input
requirements (preliminary estimates or guesses can be used) and the system control/ operating
strategy used for the latest version of the screening model.

Subcomponent Models

Wind resource.
The subcomponent model for the wind input consists of along term average wind speed,
standard deviation, and autocorrelation. These would correspond to averages taken over
intervals of one hour (if data had been collected). A Weibull or Rayleigh probability
distribution is assumed to represent the wind resource.

Wind turbine power.
Wind power from a single machine is calculated from the wind speed distribution by
using awind turbine power (W) vs. wind speed (V) curve. Multiple wind turbines are
also alowed, but they are assumed to be identical. They can either be uncorrelated or
correlated.

Diesel power.
The diesel generator(s), which are assumed to be identical, are modeled by a
conventional linear fuel (F) vs. power (D) curve of the form: F = a+bD.

Load.
Theload is characterized by the average and standard deviation of the real power
required by the consumers over the time period. As with the wind, the load values would
correspond to averages taken over one hour. The load may be assumed to follow a
shifted Rayleigh distribution (i.e., minimum >0).
Dump load.
A dump load is assumed to exist such that al power produced in excess of the system's
requirements can be dissipated. This could occur either due to excess power production
from the wind turbine(s) or as aresult of the minimum allowed power of the diesel(s).
Storage.
The overall model provides for a choice of three storage options:
1) No Storage,
2) Power Smoothing Storage, and
3) Long Term Storage.
For power smoothing storage, it is assumed that rapid power fluctuations due to
turbulence or short term load variability can be ignored. In thisidealized case, the wind
power input approximately equals the load. For the case of long term storage, an ideal
storage system is assumed. That is, lossesinto and out of storage are not considered, and
there is no restriction on the rate at which energy can be taken from or placed in storage.
In this option, the storage is characterized by its maximum energy capacity (in KWh).



System Control or Operating Strategy

The basis of the wind/diesel system model is the application of an overall energy balance
equation. Inits most basic form the energy balance is expressed by:

D=L-W+DP-U

where: D = Power delivered from the diesel generator(s),
L = Power required by the load,
w = Power delivered from the wind turbine(s),
DP = Power dissipated in the dump load, and
U = Unmet load.

As described below, the overall model uses different analytical techniques for the various system
storage options. More detail will be given for the long term storage option (especially the
method of data synthesis) since it represents our newest addition to the overall screening model.

No Load and Power Smoothing Options.

For the no load and power smoothing options, the screening model is based on the purely
statistical methods used in a previous model (Manwell and McGowan, 1995). That is, when the
wind speed is not correlated with the load, it can be shown (see Hunter and Elliot, 1994) that the
average fuel usage of the diesel(s) is given by:
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where: F() = Diesel fuel consumption as a function of net diesel load, L-W;
L = Total system electrical load;
pw(W) = Probability density function of WTG power;
p.(L) = Probability density function of system load;
w = WTG power; and
Wmax = Maximum possible wind power.

For computational purposes, the double integral above is approximated by methods summarized
in Manwell and McGowan (1995)

Long Term Storage Option.
The long term storage option is based on time series analysis method, and a simple control (or
dispatch strategy). The time series data is assumed to be hourly. Real data can be used or, as
discussed below, it can be synthesized by a built in synthesizer program. The major steps of the
control strategy are:
1) Any wind energy that is available is used to reduce the load. Thisresultsin a net load.
2) Storage is checked to see how much, if any, energy may be taken to further reduce the net
load.
i) If possible, the entire net load is supplied by storage. In this case, the diesels are not used
at al.
i) If some, but not all of the net load can be supplied from the storage, then that is done.
The remainder of the load is supplied by the diesels, if possible.
i) 1f the net load is negative, i.e. if there is extra energy available from the wind, then that
energy is put into storage, up to the capacity of the storage.




3) The number of diesels that are running in any time step is determined by the average net load
during that time step. When there are multiple diesels running in the system, all but one of
them runs at rated power. The remaining diesel follows the load.

Data Synthesis for Long Term Storage

In theory, it is possible to develop along term wind/diesel system model which is purely
statistical in nature. For example, University of Massachusetts researchers (Manwell, Deng, and
McGowan, 1994) describe one such model, but it only applies to a single diesel and single wind
turbine. It isalso based, on the assumption of alinear wind turbine power curve, and the
capacity of the storage systemislimited. It has, so far, proved to be more straightforward to use
atime series approach, and use statistical methods to synthesize the time series data. Inthe
method used in the latest model, data is synthesized which has a number of desired summary
characteristics. These are the mean, the standard deviation, the type of probability density
function, and autocorrelation at a specified lag. In addition, a diurnal cycle may be
superimposed

The data synthesis method used here employs a Markov process approach. It is an adaptation of
one proposed by McNerney and Richardson (1992) and then further developed by Manwell, et al
(1994). For wind speed, the method produces a time series with a specified mean, standard
deviation, probability density function (Rayleigh or Weibull), and autocorrelation. A diurnal
sinusoidal variation, starting at a specified hour, may also be imposed. The load generator is
similar to that for wind in that it results in a time series with a specified mean, standard
deviation, probability density function and autocorrelation. In this case, however, a shifted
Rayleigh is used for the shape of the target probability density function. A diurnal sinusoidal
variation, starting at a specified hour, may also be imposed. The complete process for
synthesizing dataisillustrated in Figure 1.
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Fig. 1. Flow Chart of Data Synthesis Process

As can be seen, there are five key steps.

1) Inputting the “target” parameters,

2) Creating aMarkov process transition probability matrix,

3) Generating an initial time series using the process transition probability matrix,

4) Adjusting the time series if necessary to ensure that it has the desired mean and standard
deviation, and

5) Multiplying the time series by a diurnally varying scale factor.

A short summary of these steps follows:



Data I nputs.
For the data synthesizer used in this model, the inputs are defined as the “target “ (mean,

standard deviation, type of probability density function, and autocorrelation at a specified
lag). These values will then determine the characteristics of the probability density
function and accordingly the probability density vector, which is described next.

Markov Process Transition Probability Matrix.
The method of generating a time series from a Markov process transition probability
matrix (TPM) is documented in a recent technical report (Manwell, 2000), so it will only
be described here briefly. The method initially assumes that any time series can be
represented by a sequence of "states." The number of statesis chosen so that not only
generated time series do not appear too discontinuous, but also that calculations are not
too burdensome. The Markov TPM is a square matrix, whose dimension is equal to the
number of states into which atime seriesisto be divided. The value in any given
location isthe probablllty that the next point in the time series WI|| fall (i.e. will make a
transition) into the j™ state, given that the present point isin the i state. An additional
consideration isthat there must be a known relation between the state number and the
value of that state. Thisvalue is normally the midpoint of the state.

The mogt intuitive way, and most common way, to generate a Markov TPM isto start
with atime series of data. Generating a TPM without using an initial time seriesis
considerably less intuitive. Nonetheless, it is possible to do so in such away that the
probability density function of data generated with its use will be equal (given a sufficient
number of points) to atarget probability density function. The method used for
generating a TPM without use of time series data is discussed in more detail in another
report (Manwell, 2000). Since thereisadirect relation to the pdf and means and standard
deviations, those values will be preserved aswell. This part of the process (above)
resultsin a TPM, which can generate a time series with values close to the target values.
(They will not be exactly the same, as discussed below.) The time series will have an
exponentially decreasing autocorrelation, but will not necessarily be equal to that of the
target.

Generation of Time Series Using Transition Probability Matrix.
A time seriesis generated by first assuming a starting value. This can be any number
corresponding to area state. A random number generator is then used to select the next
point, based on weightings which are proportional to the probabilities in the row
determined by the present state.

Adjusting Time Seriesto Correct Mean and Standard Deviation.
As noted above the mean and standard deviation of the synthetic time series will not
necessarily be exactly the same as the target values. Thisis because the time series
includes a finite number of points, determined by a random number generator as well as
the TPM. Asthe number of points increases the summary characteristics of the time
series should approach the target values, but that is not a helpful solution in most cases.
Since the most significant parameter is the mean, and the next most significant is the
standard deviation, the approach taken here isto scale the time series so that the mean
and standard deviation is equal to thetarget. Thisis done by first finding the mean and
standard deviation of the time series. The calculated mean is subtracted it from each
value of the time series to obtain a new time series of zero mean. The zero mean datais
then multiplied by the ratio of target standard deviation and the calculated standard
deviation, giving a second new series, but with the desired standard deviation. To this
time seriesis added the desired mean. The resulting time series will then have both the
desired mean and standard deviation. No attempt is made to correct the probability
density function.




Diurnal Scaling of Time Series.
It is sometimes desired to include diurnal fluctuations in synthesized data. The data may
be diurnally scaled by multiplying each point by a sinusoidal scale factor. The period of
the sinusoid isone day. The user may select the time of day of the maximum, as well as
the ratio between the maximum value and the mean. Note that this method will preserve
the mean, but may somewhat distort the standard deviation and the probability density
function.

COMPUTER CODE

The screening model (Wndscreen3) has been coded in Microsoft Visual Basic 3.0 and is
available on the Internet at http://www.ecs.umass.edu/mie/labs/rerl/Software/Index.html. The
wind turbine inputs include the wind turbine power curve and the number of wind turbines. The
power curve may be read in from afile or input on the screen. If there is more than one wind
turbine, the user may select whether or not (default assumption) all the wind turbines are
correlated. The diesel inputs include the full load rated power, the minimum allowed power, the
full load fuel consumption, the no load fuel consumption, and the number of (identical) diesels.
The load input for the no storage and power smoothing cases, as described previously, may be a
Separate time series or may be produced by the data synthesizer.

The wind input for the no storage and power smoothing cases consist of the long term mean
wind speed and standard deviation of the wind speed, and the short term variability (turbulence
intensity). For the long term storage case, the input consists of atime series. Thistime series
may be a separate file or it may be produced by the data synthesizer. The storage input is smply
the total amount of energy, in kWh. The outputs from WndScreen3 include the average
available wind power, the average diesel power, the average fuel use, the average dump power
and the average unmet load.

EXAMPLE OF USE OF COMPUTER MODEL

In order to illustrate the operation of WndScreen3, a number of runs were made for a case study
on an isand in Boston (MA) Harbor. A commercially available wind turbine modeled was rated
at 60 kW. The number of turbines was one, three or five. For these cases, a system using one
diesdl, rated at 110 kW, was examined. A typical linear power curve was assumed, for which the
no load fuel consumption was assumed to be 20% of the full load fuel use. Three types of cases
were considered: no storage, power smoothing, and long term storage. In the latter case, storage
values of 10, 100, and 1000 kWh were used. Summary characteristics of data collected in 1998
and 1999 were used as inputs. Based on this data, the mean wind speed was taken to be 5.77 m/s
and its standard deviation was 3.09 m/s. The mean load was 36.6 kW with a standard deviation
of 10.78 kW. Variability of the wind and load were taken to be equal to WndScreen3's default
values (0.12 and 0.05 respectively.) The autocorrelation of both wind speed and load were
assumed to be 0.92 at alag of 1.

To illustrate the results in a general way, they are presented as ratios in Figure 2. Specifically,
the fraction of useful wind power is plotted against the ratio of the available wind power to the
average load. For comparison purposes aline for the ideal caseis aso included. The figure
illustrates some well known observations. When the wind power is small compared to the load
most of the available power can be used, and storage has little value. Astheratio of average
wind power to load increases, storage has a progressively greater effect. In these runsincreasing
the number of turbines increased the wind power. Note that this example case assumes that the
turbines are uncorrelated, which results in a considerable smoothing effect of short term power



fluctuations. Accordingly, there s little benefit to be seen in using short term storage. It should
be noted, however, that the implications would be considerably different if the same wind power
to load ratio were obtained by decreasing the load.
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Fig. 2. Performance Predictions from WndScreen3

COMPARISON OF SCREENING MODEL WITH DETAILED MODEL

WndScreen3 is, as previously indicated, a screening level model, and it is not intended to be as
accurate or as versatile as are more detailed models such as Hybrid2 (Manwell, et al., 1997).
Nonetheless, it isinstructive to compare the two models, so asto gain some idea as to how close
the two models may be. In the following example, Hybrid2 was run with the original data from
which the summary data used in the previous example was derived. This data consisted of the 1
year of hourly data on which the summary data used in the previous example was based.
Hybrid2 was run using three operating strategies:

1) no storage,

2) power smoothing, and

3) long term storage.

The dispatch strategy was set to be as close as possible to that used in WndScreen3.

Specifically, the load is supplied preferentially by the wind and the storage. Storage was made
ideal, and losses were ignored. The diesel was allowed to operate only to make up any deficit in
supply from the wind turbine or the storage. For comparison in the long term storage cases,
WndScreen3 was run with the real data as well as the synthetic data.

The results of the comparison runs for the no storage and 1000 kWh storage cases are shown in
Figure 3. As can be seen, for the no storage cases, the results are nearly indistinguishable. For
the long term storage case, Hybrid2 and WndScreen3 are also nearly indistinguishable when real
datais used in both models. When the synthetic data is used in WndScreen3, that model
overestimates the fuel saving somewhat, particularly when a single wind turbine isused. In this
case the difference is about 10%. The difference appears to arise because of the seasonal
differences between the wind and the load. These are not accounted for in the data synthesis
algorithms. It should be noted, however, that when seasonal summary datais available
WndScreen3 could be run multiple times to improve the results. When there is more wind power



available the results are closer, presumably because there is a greater number of occasions when
there is excess energy to supply the storage.
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Fig 3. Comparison of WndScreen3 and Hybrid 2
CONCLUSIONS

The results of the examples and the comparison with Hybrid2 illustrates that WndScreen3 can
yield predictions close to those of a much more detailed model for a number of cases of interest.
Thus, this model can be quite useful in giving a preliminary assessment of the potential for afew
types of wind/diesel systemsin an arbitrary application. Thisis not to say, however, that it can
supplant a more detailed analysis when making final decisions. The results of WndScreen3 are
often optimistic when compared with more detailed models, in particular since the storage model
isso idedlized. On the other hand, there are certain dispatch strategies, which can make more
effective use of the storage and the diesels than can the simple one used in WndScreen3. What
WndScreen3 can do, however, isto quickly indicate when a more detailed analysis is warranted.
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