Policy Options for Renewable Energy Incentives: the View from Europe

or

What's with Feed-in Tariffs?

Massachusetts Wind Working Group

November 9, 2006

J. F. Manwell

Overview

- Renewable energy in Europe today
- Historical wind energy growth
- Need for incentives
- Renewable energy policy incentives in US
- The situation in Europe
- Implications for Massachusetts?

Renewable Energy Research Laboratory

Context for European Interest in Renewable Energy

- Meltdown at Chernobyl nuclear plant, 1986
- Awareness of "social costs" of energy production
 - Olav Hohmeyer (Germany, 1990's) initiated the discussion
- Climate change/ attempt to meet Kyoto protocol requirements
- Relatively limited conventional fuels in Europe
- Renewable energy products/economic growth

Renewable Energy Vision in Europe

- A very high rate of deployment of renewable energy projects is needed
- Some form of financial support is required
 - Cannot rely on market alone
- Regulatory encouragement e.g. building codes
- Support of research and development Comprehensive approach
- Support for education at all levels e.g. European Masters in Renewable Energy

A Significant Role for Renewable Energy is Envisioned

Possible transformation of world's energy supply:

Figure 1
Transforming the global energy mix: The exemplary path until 2050/2100.
Source: WBGU

The Debate in Europe

- There is a general consensus that incentives are needed for renewable energy systems
- There has been considerable debate over which incentive should be used: RPS vs. Feed-in Tariffs
- Arguments particularly between Germany and the UK
- Have resulted in rifts within the European renewable energy community
 - World Wind Energy Assoc. ("German")
 - Global Wind Energy Council ("UK")
- Consensus in favor of feed-in may be emerging

The Debate Has Sometimes Been Difficult!

The Central Difference

- RPS (Renewable Portfolio Standard)
 - Fixed quota for RE projects/unspecified price for electricity sold (set by bidding)
- Feed-in Tariffs
 - Fixed price for electricity sold/unspecified quantity of RE capacity (deployment rate is function of price)

Wind Energy Historical Background (1)

- Widely used throughout world (for mechanical power) until industrial revolution; decline through 19th century
- Little development anywhere in last 200 yrs until approx. 1975
 - Except wind water pumpers in U.S. west in 1800's and small wind electric systems in U.S. in 1930's
 - Some R&D projects and proposals

Wind Energy Historical Background (2)

- Occasional efforts to revive wind energy (for electricity) throughout 20th century
- Oil crises of 1970's lead to federal R&D and policy changes in US, especially due to Pres. Carter and Gov. Brown (California)
- US was early leader in 1970's (95% of wind energy capacity before 1980)
 - Beginning of the "wind farm" era
- World leaders are now Germany and Spain

Some pre-Wind Farm Era Wind Turbines

Smith-Putnam, VT, 1930's-40's

Gedser, Denmark, 1950's

Hütter, Germany, 1950'-60's

WF-1, UMass, 1970's

1970's Policy Incentives in US

- Investment tax credits in US and California
 - Tax incentives based on cost of wind turbines
- Pubic Utility Regulatory Policy Act of 1978 (PURPA)
 - Guaranteed access to grid
 - Required utilities to buy electricity at "avoided cost"
 - Utilities offered attractive "standard offers" for sales in California
- These lead to the growth of California wind farms (among other projects)

Renewable Energy Research Laboratory

Wind Farm Era Turbines

1970's-80's

Enertech (from VT), in California

US Windpower (from Massachusetts), in California

More Recent Wind Turbines

Vestas (from Denmark), in Hull, MA, 2001

REpower (Germany) 2006

Sample Wind Energy Installation Rates

Current Incentives in the US

- Tax credits
- RPS (in some states)
- Systems benefit charges (SBC)
 - Such as Renewable Energy Trust Fund
- Net metering
- Green power

See www.dsireusa.org for information by state

Tax Credits

- Investment tax credits
 - No guarantee that generator actually works
 - No longer commonly used for wind energy
- Production tax credits (PTC)
 - Often required to make projects economic
 - Boom/bust cycles
 - Need tax liability
 - Not applicable to public entities
- Renewable Energy Production Incentive (REPI)
 - Somewhat analogous to PTC, but for public entities
 - Appropriation of funds needed annually

Renewable Portfolio Standards (RPS)

- RPS in place in some US states (e.g. Texas, Mass.) and some European countries (e.g. UK)
- Based on quota
- Retail suppliers required to supply certain fraction of electricity from renewable sources
- Requirement translates to a value for each kWh
 - Upper limit set by penalty for non-compliance

RPS (2)

- Typically, renewable aspect of electricity is "unbundled" from the electrons
- Renewable aspect is represented by renewable energy credits (REC's)
- REC's can be bought and sold
- Obligation is met by acquiring sufficient REC's
- Price set by bidding; supply and demand

RPS (3)

- Value of REC's difficult to quantify a priori
- Power purchase agreement (PPA) for REC's needed for project financing
 - PPA for energy sale needed as well
- Value of REC's could change with time, making a PPA difficult to obtain
- Supply/demand effect on REC's value creates difficulties when changing eligibility
 - E.g. hydro or biomass in Mass.

RPS in Texas

RPS has had some success in Texas:

RPS in Texas (2)

• PTC has been needed as well:

Wind Energy Growth in Europe

- Growth in Germany, Spain started when renewable tariffs implemented
- Growth in Denmark declined when renewable tariffs stopped

Source: Gipe, OSEA

The European Feed-in/RPS Breakdown

- Note: Denmark switched from feed-in after change of government
- Conservatives in UK are now recommending feedin tariffs

Feed-in	RPS
Austria	Belgium
Denmark	Italy
France	Sweden
Germany	UK
Greece	Poland
Ireland	
Luxembourg	
Netherlands	
Portugal	
Spain	
Czech Republic	
Estonia	
Hungary	
Latvia	
Lithuania	
Slovak Republic	
Slovenia	

University of Massachusetts **2**/2

Feed-in Tariff

- Also known as "EEG tariff" or "Advanced Renewable Energy Tariff"
- Used in most European countries (e.g. Germany, Spain)
- Based on mandated **price** of electricity sold into the electric grid from RE source
- Different prices for different sources
- Different prices for different wind regimes

Origin of Feed-in Tariffs

- Denmark had something like the feed-in tariff for wind in the 1980's
- Germany introduced method in 1991
 - Stromeinspeisungsgesetz für Erneuerbare Energien (Act on Feeding in to the Grid Electricity Generated from Renewable Energy Sources)
- Has been updated (2000)
 - Erneuerbare Energie Gesetz (EEG, Renewable **Energy Sources Act)**

Renewable Energy Research Laboratory

EEG: Obligation to Purchase Renewable Energy and Pay for it

- Utility is obliged to connect RE power plants o to their grid at connection point that is technically and economically suitable
- Suitability includes reasonable upgrade if required
- Utility must purchase electricity at fixed rates of EEG

EEG: Grid Connection Costs

- Costs to connect to the grid must be paid by project operator
- Costs to upgrade grid paid for by grid operator

EEG: Payment

- Local utility pays project operator for electricity at required rates
- Excess costs are distributed throughout German electricity networks

Overview of German EEG Tariffs

	2002	2003	2004	2005	2006	2007	2008	2009	2010
Solar power	48,1	45,7	43,4	41,2	39,1	37,1	35,2	33,4	31,7
Wind power initial tariffs/ prolongation*	9	8,9	8,8	8,7	8,6	8,5	8,4	8,3	8,2
Wind power final tariffs	6,1	6	5,9	5,8	5,7	5,6	5,5	5,4	5,3
Biomass < 500 kW	10,1	10	9,9	9,8	9,7	9,6	9,5	9,4	9,3
Biomass 500 kW - 5 MW	9,1	9	8,9	8,8	8,7	8,6	8,5	8,4	8,3
Biomass 5 MW - 20 MW	8,6	8,5	8,4	8,3	8,2	8,1	8	7,9	7,8
Hydropower and Gas (from landfills, mines, sewage plants) < 500 kW	7,65	7,65	7,65	7,65	7,65	7,65	7,65	7,65	7,65
Hydropower and Gas < 5 MW	6,63	6,63	6,63	6,63	6,63	6,63	6,63	6,63	6,63
Geothermal power < 20 MW	8,93	8,93	8,93	8,93	8,93	8,93	8,93	8,93	8,93
Geothermal power more than 20 MW	7,14	7,14	7,14	7,14	7,14	7,14	7,14	7,14	7,14

*windpower: initial tariffs: first 5 years (onshore), first 9 years (offshore, if installed till 2006), Prolongation 0-15 years depending on site quality, Feed-In tariff duration 20 years

J. Lackman, Bundesverband Erneuerbare Energie e.V., 2002

Close-Up of Some German EEG Rates

- Rates for wind depend on onshore or offshore
 - Early years have higher rates
 - Length of time depends on percentage of reference yield
- Rates for PV depend on size and type of application

	Years	Rate (USD)	
On Land Wind			
60% Reference Yield	11.5	0.109	
100% Reference Yield	9.2	0.109	
150% Reference Yield	5	0.109	
All	To year 20	0.069	
Offshore			
60% Reference Yield		0.114	
100% Reference Yield		0.114	
150% Reference Yield		0.114	
All	To year 20	0.069	
Solar PV			
< 100 kW rooftop	20	0.681	
> 100 kW rooftop	20	0.674	
Freestanding	20	0.570	

*converted from Euros

Wind Turbine Energy Yields

- Consider reference yield, 60% and 150% of reference
- Example: Vestas V47 on 50 m tower ("Hull I")*

Reference Yield	kWh/yr	Mean Wind, m/s	Capacity Factor
100%	1,331,800	6.0	0.230
60%	799,080	4.9	0.138
150%	1,997,700	7.4	0.346

- Implication: Hull I site is better than reference (CF = approx. 0.28)
- Many sites in Massachusetts are better than 60% of reference (see next slide)

Measured Wind Data in Massachusetts

Line corresponds to annual wind speed for EEG 60% reference yield

Renewable Energy Research Laboratory

Example: Dortmund

- Inland Germany
- Unremarkable wind: 5.1 m/s
- Municipal electric company
- Enercon 500 kW turbine
- Capacity factor: 0.17
- Cost: Eur 511k (~\$639k)
- Financed with bonds

. Hannover - Berl Dortmund GERMANY. Leipzig Frankfurt . Stuttgart

http://www.energie-cites.org/db/dortmund_139_en.pdf

More on the Debate

Feed-in EEG

- Advantages claimed
 - High efficiency
 - Allows price differentiation and reduces costs
 - Planning certainty
 - Low administration expense
 - No effect on government budgets
- Disadvantages noted
 - Lack of a acceptance by some sectors

Arguments for Feed-in

- Rapid deployment of resources
- Rapid development of local manufacturing
- Increases in local acceptance and participation
- Encourages geographic distribution
- Transparent and lower administrative cost
- More jobs, more investment, more competition in manufacturing, equipment suppliers
- Projected costs minimal

Source: Rickerson and Zytaruk, AWEA, 2006

Arguments for RPS

- Predictable market growth
- Minimizes costs to taxpayers and/or rate payers through increased competition among developers
- No picking technological winners
- Market based system of tradable credits
- Projected costs minimal

Source: Rickerson and Zytaruk, AWEA, 2006

Issues with RPS

- Focus on lower price
 - Geographic concentration
 - NIMBY and best sites first
 - High contract failure rates
- Targets near market technologies and leaves technology market to foreign manufactures
- Deployment rates relatively slow
- Single price means "windfall" for best sites
- Favors large developers
- Less portfolio diversity
- Administratively cumbersome and costly

German Building Code

- For building in rural areas, "Paragraph 35"
- Wind turbines in designated regions are permitted by right
- Evidence now has to be given as to why turbines should **not** be permitted
 - Rather than the other way around.
 - Streamlined the planning and approval process
- Cities and communities are obliged to identify local wind resource areas.

Feed-in Tariff in North America?

- Already implemented in Canada (Ontario and Prince Edward Island)
- In place to some degree in US in Washington state, Minnesota, Wisconsin (PV and biogas), New Mexico (PV only) and California (PV only)

Recent Experience in Massachusetts

- Wind studies reveal that resource is often as good as much of Germany
 - In spite of that, resource often thought of as too low for development
- Deployment is still slow
- NIMBY is a problem
- Most of the action is in towns with municipal utilities

Lessons from Europe for Massachusetts?

- Massachusetts RPS still relatively young
 - Results not in
 - Should be closely watched
- Could system be developed that includes some of the advantages of RPS and feed-in?
 - Hybrid system with quotas for various sectors (e.g. wind, PV, biomass, hydro); set minimum prices?
- State wide wind zoning law
 - Reduce impact of NIMBY
- Municipal utilities have some intrinsic advantages
 - More encouragement needed?

References

- Much information is available on the Internet
- Links to many documents of relevance: http://www.wind-works.org/