

Reducing Uncertainty in Resource Estimates for Massachusetts Wind Projects

Shawn Shaw Charles McClelland

MA Wind Working Group June 29, 2011

Wind Resource Prediction and Measurement in Massachusetts

- Commonwealth Wind Evaluation and Siting Tool (CWEST) required for all MassCEC grant applications
- Wind speed measurement for larger community and commercial wind projects
 - Mostly 50m-60m met towers
- Smaller projects (~100kW) generally rely on simulation and virtual met data

About CWEST

Developed to standardize site assessment, wind resource, and AEP estimation methods

Based on 2003 AWST Wind Maps

+

Effective ground level adjustment

+

Measured wind shear

+

Empirical wind speed adjustment

=

Wind speed estimate

Review of New England Wind Map

- Created by AWS Truewind circa 2003
- Covers NE region (MA, ME, CT, RI, VT, NH)
- 200m x 200m wind speed grid resolution
- Wind speed probability distribution and wind rose
- Reported +/- 0.4 m/s

Cadmus Regional Wind Map Analysis

- 28 met tower sites
- Comparison w/ CWEST Wind Resource Report
- Normalized data according to:
 - Effective ground level
 - Long-term averages from national climactic data center (NCDC) sites

Sources of Wind Resource Data

6 NCDC weather stations

28 WEC metdata sites

Met Tower Derived Adjustments to CWEST Wind Speed Predictions

Modifying CWEST Wind Speed Estimates

- Regional adjustments to wind speeds range from 0.89 to 0.98
- In Cadmus' small wind evaluation, applying met towerderived adjustments improved accuracy of AEP predictions by ~13%

Relative Production for 17 SWTs (2010)

Annual Variability

Annual Mean Wind Speed 2001-2010

Wind Shear 101

Wind Power Law

$$U_{x} = U_{ref} \left\{ \frac{H_{x}}{H_{ref}} \right\}^{\alpha}$$

Wind Shear – Roughness Class Examples

WEC data sites grouped by terrain roughness:

Wellfleet: Moderate-Smooth – coastal, flat, shrubs

New Bedford WWTP: Moderate – coastal, flat, low buildings, sparse vegetation

Bourne Water District: Very rough— low hills, dense, old growth forest

28 WEC data sites, average wind shear values, grouped by region

Wind Shear and Height

Height-Based Change in Wind Shear for 16 Met Towers				
General Terrain	Change in Alpha	Ν		
Smooth-Moderate	-45%	1		
Moderate-Rough	2%	1		
Rough	-9%	8		
Very Rough	-12%	6		
Overall Average	-12%	16		

Variable Wind Shear Influence on Hub Height Wind Speed

Effect of Alpha on Predicted Hub Height Wind Speed

Approx 5% change in 80m wind speed per 0.1 change in Alpha

Base Height: 50m Hub Height: 80m

50m Annual Mean Wind Speed: 5.5 m/s

Case Study: Windville, MA

Site considering utility-scale project

South of Boston ~10 miles from coast

6 months of SoDAR Data (November 2010 – May 2011)

MCP analysis used to adjust to annual values

Why measure speeds onsite? Wind Resource: AWS, CWEST, Triton

Comparison of Wind Shear Data Sources for Windville

AWST maps under predict wind shear by 57% and 43%.

CWEST under predicts wind shear at lower heights, and over predicts wind shear at upper heights.

Wind Shear Impacts for Windville Site

Measured Wind Speeds		
Height AEGL (meters)	wind speed (m/s)	
30	3.3	
50	4.4	
70	5.1	

Measured Wind Shear		
lower/upper height	alpha	
30m/50m	0.55	
50m/70m	0.43	

Estimated Wind Resource and AEP for Hypothetical 1.65MW turbine on 70m tower				
Source	70m wind speed	AEP (Million kWh/yr)		
Estimate based on 30/50m shear	5.3	2.24		
Actual measured value	5.1	1.97		
% difference	4.3%	13.7%		

→ Using estimated wind shear between 30 and 50 meters resulted in a performance overprediction of about 14%.

Conclusions

Prospecting and Small Projects

- Wind map predictions optimistic but regional adjustments can help improve accuracy of estimates
 - 5%-10% sufficient for most regions

Larger Projects

- Wind shear changes with height and can cause inflated AEP estimates if not considered
 - Especially important for rougher sites
 - Spot measure shear with SODAR
 - Stepwise shear calculation

Thank You

Shawn Shaw The Cadmus Group, Inc.

Shawn.shaw@cadmusgroup.com

www.cadmusgroup.com

