Title | Utilization of the human louse genome to study insecticide resistance and innate immune response. |
Publication Type | Journal Article |
Year of Publication | 2015 |
Authors | J Clark, M, Yoon, KSup, Kim, JHyeon, Lee, SHyeock, Pittendrigh, BR |
Journal | Pestic Biochem Physiol |
Volume | 120 |
Pagination | 125-32 |
Date Published | 2015 May |
ISSN | 1095-9939 |
Keywords | Animals, Biological Assay, Genome, Insect, Humans, Immunity, Innate, Insecticide Resistance, Insecticides, Pediculus, Pyrethrins |
Abstract | Since sequencing the human body louse genome, substantial advances have occurred in the utilization of the information gathered from louse genomes and transcriptomes. Comparatively, the body louse genome contains far fewer genes involved in environmental response, such as xenobiotic detoxification and innate immune response. Additionally, the body louse maintains a primary bacterial endosymbiont, Candidatus Riesia pediculicola, and a number of bacterial pathogens that it vectors, which have genomes that are also reduced in size. Thus, human louse genomes offer unique information and tools for use in advancing our understanding of coevolution among vectors, endosymbionts and pathogens. In this review, we summarize the current literature on the extent of pediculicide resistance, the availability of new pediculicides and information establishing this organism as an efficient model to study how xenobiotic metabolism, which is involved in insecticide resistance, is induced and how insects modify their innate immune response upon bacterial challenge resulting in enhanced vector competence. |
DOI | 10.1016/j.pestbp.2014.11.008 |
Alternate Journal | Pestic Biochem Physiol |
PubMed ID | 25987230 |
PubMed Central ID | PMC4438269 |
Grant List | R01 AI045062 / AI / NIAID NIH HHS / United States R56 AI081933 / AI / NIAID NIH HHS / United States |
Veterinary and Animal Sciences