The persistence and degradation of chlorothalonil and chlorpyrifos in a cranberry bog.

TitleThe persistence and degradation of chlorothalonil and chlorpyrifos in a cranberry bog.
Publication TypeJournal Article
Year of Publication2003
AuthorsPutnam, RA, Nelson, JO, J Clark, M
JournalJournal of agricultural and food chemistry
Date Published2003 Jan 1
AbstractThe effect of a spray-tank adjuvant on the persistence, distribution, and degradation of two pesticides, chlorothalonil and chlorpyrifos, was studied in a commercial cranberry bog. Pesticides were applied according to label instructions to cranberry plants in paired plot studies. Dislodgeable foliar and whole fruit residues of both pesticides and several degradation products were assessed over a growing season. Residues were also assessed in soil samples collected at fruit harvest. Adjuvant increased both fruit and foliar residues but did not significantly alter the dissipation rate or metabolism of either pesticide. The dissipation of dislodgeable foliar chlorothalonil and chlorpyrifos residues followed first-order kinetics, with estimated half-lives of 12.7 and 3.5 d, respectively. All residue levels on harvested fruit were well below the current U.S. EPA tolerances for fresh cranberries. Chlorothalonil (58%) was the major residue in fruit at harvest (76 d post-chlorothalonil application), with 4-hydroxy-2,5,6-trichloroisophthalonitrile and 1,3-dicarbamoyl-2,4,5,6-tetrachlorobenzene accounting for 26% and 6% of the total residues, respectively. Degradation products accounted for 88% of the total chlorothalonil residues in soil at fruit harvest. The products 1,3-dicarbamoyl-2,4,5,6-tetrachlorobenzene, 1-carbamoyl-3-cyano-4-hydroxy-2,5,6-trichlorobenzene, 2,5,6-trichloro-4-methylthioisophthalonitrile, and 2,4,5-trichloroisophthalonitrile have not been previously identified in cranberry bog environments. Chlorpyrifos was detected in fruit at harvest (62 d post-chlorpyrifos application), but no metabolites were found. Chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol, however, were detected in earlier fruit samples and in foliage and soil samples.
Alternate JournalJ. Agric. Food Chem.