Biochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae).

TitleBiochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae).
Publication TypeJournal Article
Year of Publication2008
AuthorsYoon, KSup, Kwon, DHo, Strycharz, JP, Hollingsworth, CS, Lee, SHyeock, J Clark, M
JournalJournal of medical entomology
Volume45
Issue6
Pagination1092-101
Date Published2008 Nov
AbstractThis study establishes deltamethrin resistance in a common bed bug, Cimex lectularius L., population collected from New York City (NY-BB). The NY-BB population was 264-fold more resistant to 1% deltamethrin in contact bioassay compared with an insecticide-susceptible population collected in Florida (FL-BB). General esterase, glutathione S-transferase, and 7-ethoxycoumarin O-deethylase activities of NY-BB were not statistically different from those of FL-BB. cDNA fragments that encoded the open reading frame of voltage-sensitive sodium channel alpha-subunit genes from the FL-BB and NY-BB populations, respectively, were obtained by homology probing polymerase chain reaction (PCR) and sequenced. Sequence alignment of the internal and 5' and 3' rapid amplification of cDNA ends (RACE) fragments generated a 6500-bp cDNA sequence contig, which was composed of a 6084-bp open reading frame (ORF) encoding 2027 amino acid residues and 186-bp 5' and 230-bp 3' untranslated regions (5' and 3' UTRs, respectively). Sequence comparisons of the open reading frames of the alpha-subunit genes identified two point mutations (V419L and L925I) that were presented only in the NY-BB population. L925I, located the intracellular loop between IIS4 and IIS5, has been previously found in a highly pyrethroid-resistant populations of whitefly (Bemisia tabaci). V419L, located in the IS6 transmembrane segment, is a novel mutation. A Val to Met mutation at the corresponding position of the bed bug V419, however, has been identified in the tobacco budworm as a kdr-type mutation. This evidence suggests that the two mutations are likely the major resistance-causing mutations in the deltamethrin-resistant NY-BB through a knockdown-type nerve insensitivity mechanism.
Alternate JournalJ. Med. Entomol.