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Abstract— Our paper proposes a direct sparse visual odom-
etry method that combines event and RGB-D data to estimate
the pose of agile-legged robots during dynamic locomotion
and acrobatic behaviors. Event cameras offer high temporal
resolution and dynamic range, which can eliminate the issue
of blurred RGB images during fast movements. This unique
strength holds a potential for accurate pose estimation of
agile-legged robots, which has been a challenging problem to
tackle. Our framework leverages the benefits of both RGB-
D and event cameras to achieve robust and accurate pose
estimation, even during dynamic maneuvers such as jumping
and landing a quadruped robot, the Mini-Cheetah. Our major
contributions are threefold: Firstly, we introduce an adaptive
time surface (ATS) method that addresses the whiteout and
blackout issue in conventional time surfaces by formulating
pixel-wise decay rates based on scene complexity and motion
speed. Secondly, we develop an effective pixel selection method
that directly samples from event data and applies sample
filtering through ATS, enabling us to pick pixels on distinct
features. Lastly, we propose a nonlinear pose optimization
formula that simultaneously performs 3D-2D alignment on both
RGB-based and event-based maps and images, allowing the
algorithm to fully exploit the benefits of both data streams.
We extensively evaluate the performance of our framework
on both public datasets and our own quadruped robot dataset,
demonstrating its effectiveness in accurately estimating the pose
of agile robots during dynamic movements.

Supplemental video: https://youtu.be/-5ieQSh0g3M

I. INTRODUCTION

Legged robots are developed to tackle a range of demand-
ing tasks, such as disaster response [1], search-and-rescue
operations [2] [3], patrolling and exploring challenging en-
vironments such as forests, mountains, underwater, and even
space [4]–[9]. To navigate through such rough terrain, one
essential function is to accurately estimate a robot’s position
and orientation. However, the accuracy of traditional RGB-
based visual odometry (VO) or integration of VO and inertia
measurement unit (VIO) [10]–[12] can significantly drop in
dark or highly dynamic environments, where images can be
blurred or under-exposed. To address this issue, researchers
began to utilize a new type of camera, called event cameras,
which offer microsecond-scale temporal resolution and a
high dynamic range of up to 140 dB, compared to the
standard RGB camera’s dynamic range of 60 dB.

Event cameras differ from RGB cameras in that they
detect brightness changes in the scene asynchronously and
independently for every pixel, which allows for almost
continuous sensing without image blur even under dynamic
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Fig. 1. Pose estimation during the backflip of Mini-Cheetah. The
trajectory of the robot is shown in transparent figures, while the trajectories
from different algorithms are shown in different colors. USLAM [15]
terminates at point A. VINS-Fusion [18] diverges at point B. Our method
successfully converges to the accurate position C.

movement or low-light conditions [13]. Unlike RGB cameras
which generate images with 3-channel values, the event
data stream includes the position, timestamp, and polarity
of emitted events. A common approach to using event data
is constructing an event image by accumulating events in a
single frame at a constant rate, then applying techniques de-
veloped for RGB images. [14]–[16] proposed feature-based
algorithms, which detect and track features (e.g. corners,
lines, etc) from event images. Although the prior works
showed impressive tracking performance during dynamic
movements, the feature detection and tracking are not robust
to random movements because the event image depends
on not only texture but also the motion of the camera.
This motion-dependency problem is particularly significant
in legged robots, which involve sudden motion direction
changes and impact disturbances from touch-downs and
jumps [17]. In addition to these feature detection and tracking
challenges, the process of feature extraction and matching is
time-consuming and may require sacrificing the low-latency
features of an event camera.

Contrary to feature-based (indirect) methods, direct meth-
ods [19] use pixel brightness to estimate the pose, bypassing
the need to identify and match features. By using abundant
information from images, direct methods are more robust and
accurate as long as the environment brightness is consistent
and the image gradient transitions gradually. However, event
images are constructed by binary event data, resulting in
discrete changes in gradients that make the optimization
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difficult to converge smoothly to a correct pose. A popular
approach to remedy the issue is to use a time surface [20],
which is a 2D map constructed by decaying grayscale values
based on the timestamp of the last spiked event (Fig. 4). The
resulting smooth gradient allows the optimizer to converge
to the correct pose.

While time surfaces can create smooth gradients for pose
estimation, choosing the correct decay rate is often chal-
lenging in real-world scenarios because the time surfaces
may overlap or lose event data depending on camera motion
speed and the complexity of the environment’s textures if the
decay rate is incorrectly set. [21] proposed a speed-invariant
time surface, but this approach only considers motion speed
and does not account for texture complexity, which can
be an issue in environments with rich textures. To address
this limitation, we propose an adaptive time surface (ATS)
that adjusts the decay rate based on both camera motion
and environment textures. Our ATS computes the pixel-
wise decay rate by analyzing the temporal event density
of neighboring pixels. This allows the ATS to decay faster
in regions experiencing high-texture environments or fast
motion, generating a better-represented time surface map.
Conversely, in parts of the ATS with low-texture environ-
ments or experiencing slow motion, the ATS keeps event
data longer, resulting in clear and distinct selected pixels.

In addition to the challenges associated with time surfaces,
detecting and maintaining distinctive pixels remain signifi-
cant issues in direct methods too. For instance, [22] selects
pixels based on a constant threshold that can result in either
too sparse or dense pixel selection, and the poorly distributed
points can impede optimization [19]. Also, picking pixels
from distinctive features in the scene is important to achieve
consistent key point matching since direct methods do not
explicitly detect or track features. To address this issue, we
propose a novel approach for selecting pixels directly from
event data and performing filtering based on ATS. We em-
ploy two filtering processes. Firstly, we eliminate all pixels
falling on the black areas of a median blurred ATS. Next,
we further select only the pixels with high grayscale value
and gradient of ATS. Additionally, we enforce a minimum
distance between all selected pixels to achieve better point
distribution. This approach helps to avoid selecting pixels in
noisy regions and obtain well-distributed points in distinctive
areas, such as the edges or corners of the scene.

Selected key points and correlated depth information are
used to construct a map keyframe (Fig. 2), or to com-
pute a pose. During pose estimation, photometric errors
in both RGB-based and event-based maps and images are
simultaneously minimized to fully exploit both data streams.
Through these three significant algorithmic improvements,
namely ATS, pixel selection and filtering, and simultaneous
optimization over RGB and event data, we achieved an
accurate and robust pose estimator. Prior research on this
topic has proposed an event-based direct method [23], but
their algorithm may need to compromise the event camera’s
high temporal resolution because the event generation model
(EGM) requires RGB images to generate a brightness incre-
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Fig. 2. Overview of our pose estimation framework. During slow motion,
we utilize RGB image-based pose estimation alone (indicated by red) to
calculate the current pose, Ti. When a substantial movement is detected,
we activate the event stream for pose estimation by creating a temporary
map and performing 3D-2D alignment (indicated by cyan) in conjunction
with the RGB-based map and image.

ment image, which can be affected by the motion blur of
RGB images.

Significant progress has been made in event-based visual
odometry in recent years; however, prior methods have
mainly been tested in aerial systems (e.g. drones) or wheeled
ground vehicles, which typically do not undergo sudden
changes in motion direction. Moreover, the primary purpose
of pose estimation in aerial or wheeled systems has been
obstacle avoidance or path following, which can tolerate
relatively large errors in estimation accuracy. In contrast,
legged robots traverse rough terrains by making contact with
the ground, which demands greater robustness and accuracy
of pose estimation. For example, even a slight error in
estimation can cause stumbling or falling, leading to balance
failure. Also, a dynamic maneuvering of a legged robot
involves significant disturbance to vision sensors because
of jerky movements and impacts from ground touchdowns.
To the best of our knowledge, prior event camera-based
estimation algorithms have not been tested on legged robots,
and our experiments show that state-of-the-art event-based
algorithms [15], [18] quickly diverge once a robot makes
dynamic locomotion involving aerial phase, highlighting the
need for more robust and accurate pose estimation methods
for legged robots.

Our contributions can be summarized as follows: 1) devel-
opment of a direct-method-based estimation framework that
integrates RGB-D and event data to achieve accurate and
robust pose estimation of legged robots, without requiring an
IMU sensor, 2) extensive algorithmic improvements of pixel
selection and tracking, including a novel pixel-wise adaptive
decay rate of time surface, an effective pixel selection
algorithm using event data and our ATS, and a simultaneous
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Fig. 3. Adjacent pixel selection pattern. When building an ATS, we first
pick 16 pixels (light green grids) around the target pixel(dark green grid)
based on the given pattern. Among 16 pixels, we select the n latest event
data to compute the decay rate of the target pixel.

pose estimation using both RGB-based and event-based data,
and 3) compelling 6-DoF motion evaluations on both a
public dataset and our own quadruped robot dataset. Our
results demonstrate pose estimation less than 7 cm position
error during dynamic locomotion such as trotting, pronking,
and bounding. In addition, for the first time, our method
successfully captures the acrobatic backflip motion of a
quadruped robot (Fig. 1) without divergence.

II. POSE ESTIMATION FRAMEWORK

The core of the proposed method follows the PTAM [24]
model that separates the SLAM system into tracking and
mapping threads. As shown in Fig. 2, the architecture takes
synchronized and aligned RGB, depth, and event data as
input. The left part is RGB and depth-based mapping (gray
blocks) and tracking (red blocks) algorithm, which utilizes
RGB-D data from depth images to construct a map based on
an initial pose and estimated pose by a direct method using
3D-2D alignment. The right part shows a fusion strategy
utilizing both RGB and event data (cyan blocks) to estimate
a pose when a high-speed motion is detected. During normal
operation, if the relative pose between consecutive frames is
below a threshold, the tracking module employs only the
RGB-based local map and the current RGB image in 3D-
2D alignment to estimate the current pose TRGB

i . However,
when the relative motion surpasses the threshold, the tracking
module fuses information from the RGB-based local map,
RGB image, event-based temporary map, and ATS to achieve
superior tracking performance to estimate TRGB+Event

i . In
the following sections, we will first explain the process of
adaptive time surface map (ATS) construction and pixel
selection, and then introduce the mapping and tracking
modules.

A. Adaptive Time Surface

A time surface map is a 2D image that visualizes the
history of moving brightness patterns at each pixel and em-
phasizes the most recent event data with a higher grayscale
value. Specifically, the grayscale value at each pixel location
x is calculated based on the following equation:

T (x, t) = 255× exp

(
− t− tlast (x)

τ(x)

)
, (1)

Slow 
Speed

High 
Speed

TS ATS

Fig. 4. Time surface (TS) and adaptive time surface (ATS). Time
surface and our adaptive time surface in walking motion (low speed) and
backflip motion (high speed). ATS provides a clearer representation in both
situations.

where τ is typically set to a constant value, which makes
all the pixels decay at the same ratio. However, depending
on the camera motion and environment texture, the constant
decay rate can cause an image with either too little or too
much event data, neither of which is desirable. In this paper,
we propose a novel adaptive time surface that calculates
pixel-wise decay rate, τ(x), based on the surrounding pixels’
timestamp. The decay rate of ATS is calculated by

τ(x) = max

(
τu −

1

n

n∑
i=0

(t− tlast,i), τl

)
, (2)

where τu and τl are the upper and lower bounds of the decay
rate, respectively. tlast,i is the timestamp of the n latest
pixels around x that are selected by the patterns depicted
in Fig 3. Note that the pixels with tlast = 0, meaning that
the pixels have not been activated, are not included in the
ranking computation. Once we pick the n latest pixels around
x, then the upper bound is subtracted by the average of the
time gap between the timestamp and the current time. The
subtracted number sets the decay rate of the pixel x unless it
is smaller than the lower bound. Then blur and median blur
filters are applied to produce a smoother result.

Our ATS utilizes this adaptive decay rate based on the
complexity of the environment being processed. This ap-
proach ensures that the time surface decays faster in high-
texture environments or during a high-speed motion to pre-
vent overlapping pixels or white-out issues and construct
a time surface with distinct pixels. In contrast, the ATS
decays slower in low-texture environments or during low-
speed motion, which ensures that the time surface captures
sufficient information over a longer period, leading to im-
proved pixel selection. Fig. 4 compares the ATS algorithm
with a traditional time surface that uses a constant decay rate,
τ . The figure clearly demonstrates that the ATS algorithm
produces a more distinct and clear surface under both slow-
speed and high-speed motion.
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Fig. 5. Pixel detection and filtering on ATS. Events (a) are filtered
through bright regions in the ATS through the use of a mask (b), then
through a grayscale threshold (c). Each event must be a certain amount of
pixels apart to prevent crowding. The result is a set of selected pixels (d).
The rejected events are marked as red crosses at the end of red lines.

B. Pixel selection and filtering

We utilize different pixel selection strategies for RGB
images and ATS. For RGB images, we followed the idea
explained in [19] to ensure well-distributed key pixels. In our
algorithm, we first divide an image into d × d blocks, then
select pixels with gradients exceeding a certain threshold,
which is adjusted based on the number of key pixels selected
in each block. Therefore, each block has a different thresh-
old depending on the underlying texture, and the adjusted
thresholds help every block to contain an adequate number
of key pixels.

In the case of pixel selection in ATS, we tried to avoid
pure gradient-based methods to pick pixels from distinctive
features in the scene. One issue of gradient-based key pixel
selection in time surfaces (TS) is that TS usually employ
filtering techniques that smooth out the gradients of TS,
which can make it challenging to extract key pixels since
high gradients are commonly used to identify them. To
address this issue, we propose a novel pixel selection and
filtering algorithm that selects pixels around the brightest
regions in the ATS. Our approach starts by making a new
image by applying a median blur to the original ATS,
retaining only the pixels whose grayscale value on ATS
image exceeds the median value of the blurred image, which
is shown in Fig. 5 (b). Next, we project events accumulated
during a quarter duration of the time used for ATS building
onto the mask, and only the points that fall on the white
region of the mask are considered for further filtering. In the
subsequent filtering round, we project the remaining events
back to ATS, selecting only those with high grayscale value
and gradient as final candidates, and the number is further
reduced based on the distance between the points, which is
summarized in Eq. (3), and the resulting pixel selection and
filtering output on the ATS is shown in Fig. 5(d).

Spixel = {(u, v)|I(u, v) + α∇I(u, v) > h,

|ui − uj | > d, |vi − vj | > d}
(3)

where I(u, v) is the grayscale value and ∇I(u, v) is the
gradient for that pixel and α is a scale factor. New pixels
should be away from the existing pixels for d pixels both in
X and Y coordinates.

C. Mapping
Fig. 2 illustrates the RGB and depth-based mapping

module, which follows a conventional SLAM architecture.
The mapping operation is only executed when inserting
keyframes. We insert a keyframe based on the number of
tracking pixels and their distribution. Specifically, the image
is divided into nine regions, and each region is considered
healthy if the number of tracking pixels exceeds a designated
threshold. The total number of healthy regions and tracking
pixels determines whether a keyframe should be inserted,
new pixels selected, and new map points constructed. Addi-
tionally, each map point consists of multiple grayscale value
arrays, with each array storing grayscale values of the new
pixel and adjacent pixels on each pyramid layer.

To improve the tracking accuracy in dynamic environ-
ments, we construct a temporary map that is built when the
relative motion between the previous two frames exceeds a
predefined threshold. The temporary map utilizes detected
pixels from the ATS and depth data as input, with each
map point containing the same information as the primary
map point, but with grayscale values sourced from ATS.
We calculate the relative motion factor based on the angular
velocity and linear velocity of the camera between the Ti−2
and Ti−1 frames. This factor can also be replaced by an
IMU sensor or image blur detection module. The proposed
approach significantly enhances the tracking robustness of
our system in challenging, rapidly changing scenarios.

D. Tracking
We have two tracking modules, one solely based on RGB

images and another using event data along with the RGB
images. The second module is activated when we detect large
movement change, Ti−1 − Ti−2 > threshold. Here, we
explain the second module, which integrates both RGB and
event data. The primary goal of the tracking module is to
find Ti from the following equation,

min
Ti

ω1

∑
j∈MTi−1

ej
>
W j

p e
j + ω2

∑
k∈NTi−1

ek
>
W k

q e
k

s.t.

ej =

8∑
p=0

(
zjp − πRGB

(
TRGB

i M j
p

))
ek =

13∑
q=0

(
zkq − πevent

(
Tevent

RGBTRGB
i Nk

q

))
,

(4)

where ω1 and ω2 respectively are the weight factors for
RGB-based tracking and ATS-based tracking, and Wp,q are
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Fig. 6. Qualitative comparison of trajectory, position, and orientation of MVSEC indoor flying sequence (a): the 3D paths of ESVO, GroundTruth,
and our method. (b): Position error in XYZ axis. (c): Orientation in RPY order. (a) depicts the 3D path of the best accurate trajectory for clear representation.
(b) and (c) are zoomed in to provide a closer view of the trajectory that is in proximity to the GroundTruth.

TABLE I
COMPARISON ON MVSEC DATASETS. [RRPE : ◦/d, tRPE : cm/d, tATE : cm]

ESVO VINS-Fusion USLAM Ours
Rrpe trpe tate Rrpe trpe tate Rrpe trpe tate Rrpe trpe tate

flying1 0.69/1.02 2.90/4.98 14.40/47.65 0.45 2.38 167.38 0.42/0.45 5.00/− 58.56/− 0.36 1.20 6.89
flying2 0.96/− 5.51/− 338.28/− 0.82/− 7.07/− 55.75/− 0.59/− 13.87/− 159.22/− 0.49 1.56 8.92
flying3 0.59/0.64 2.71/2.73 11.10/16.03 0.42 2.77 205.02 0.39/− 4.24/− 31.27/− 0.36 1.25 5.26
flying4 −/− −/− −/− 0.69 3.79 46.13 0.55 4.45 38.58 0.63 1.75 9.16

The symbol / separates evaluation on partial trajectory and full trajectory, where the partial trajectory is manually cut before the algorithm diverges
significantly. The symbol – indicates that the algorithm fails at an early stage of the experiment.

information matrices. j is the index of visible map points
given the previous pose, Ti−1, in the RGB-based map M . k
denotes the index of the points in the event-based temporary
map, N . zjp are the saved grayscale values when we construct
the map point j (RGB), which are the same for zkq and the
map point k (event). p and q are the indices of adjacent
pixels around the selected pixel in the RGB-based map
and event-based temporary map, respectively. The function
π represents the camera-to-image projection. In summary,
Eq. (4) minimizes the errors between the saved grayscale
values and the grayscale values of the image at the projected
points from the maps to the image through the pose, Ti. If
we use an RGB-only estimation process, ω2 in Eq. (4) is set
by zero.

The proposed strategy aims to mitigate the effects of
motion blur while leveraging the constraints provided by
RGB images and fusing event data together to provide better
constraints. This complementary approach is advantageous
because motion blur typically affects the parts of an RGB im-
age that are perpendicular to the motion, and incurs pixel se-
lection and tracking failures. In contrast, these regions often
trigger the most events, which provide valuable constraints
to the optimizer. By fusing event data with RGB images,
the proposed approach can better leverage the strengths of
each modality and provide more robust tracking results. In
addition, constant motion and zero motion expectations are
used to select the initial guess for RGB-based tracking. On
the other hand, only zero motion prediction is applied to

event-based tracking since the actual motion of the system
is often random when event-based tracking is activated.

III. EVALUATION AND EXPERIMENT RESULTS

We evaluate the performance of our estimation frame-
work on a public dataset, called the Multi-Vehicle-Stereo-
Event-Camera Dataset (MVSEC) [25], and our self-collected
dataset using a Mini-Cheetah robot. To ensure a fair com-
parison, several strategies were employed. Firstly, an SE(3)
alignment strategy is applied to the saved trajectory by taking
the beginning frames into consideration. This is because each
algorithm’s local frame is defined when the algorithm is
successfully initialized. Additionally, an SO(3) alignment
is applied to make the orientation of the first frame the
same as the ground truth orientation. The alignment is done
by EVO [26]. All the results are obtained by running the
algorithms ourselves, except for DEVO [22], where we
directly adopt the accuracy results from their original paper
as the source code is not available. For relative pose error,
degrees per frame are compared with DEVO. And we choose
degrees per degree as the evaluation metric to compare with
other algorithms in our dataset because the dataset includes
static motion.

Estimation results with an absolute trajectory error (ATE)
greater than 5 m are considered as diverged, while relative
pose errors (RPE) above 1 °/d (degree per degree) and
0.2 m/d (meter per degree) are also considered as diverged.
If algorithms diverge in the middle of running, we compute



TABLE II
COMPARISON ON MVSEC DATASETS.
[RRPE : ◦/f, tRPE : cm/f, tATE : cm]

DEVO Ours
Rrpe trpe tate Rrpe trpe tate

flying1 0.30 0.88 20.58 0.15 0.57 6.89
flying2 0.36 1.12 11.33 0.20 0.70 8.92
flying3 0.53 1.21 10.60 0.15 0.60 5.26
flying4 0.53 1.44 13.16 0.26 0.81 9.16

the errors of the partial trajectory by cutting the trajectory
before its estimation diverges. Note that no loop closure was
performed to maintain consistency across all the algorithms.

A. Experiment on MVSEC Dataset

Four indoor sequences in MVSEC are used for the evalua-
tion because they include synchronized event data, grayscale
images, depth data obtained by a LiDAR, and ground-truth
trajectories captured by a LiDAR-based algorithm, which are
necessary to run various algorithms including ours. We have
compared our method with four state-of-the-art algorithms:

1) ESVO [27]: A stereo visual odometry algorithm
that utilizes two event cameras (input: stereo-event
streams),

2) DEVO: Latest event and depth data-based pose estima-
tor (input: depth and event data), which has a similar
sensor setup as our method,

3) UltimateSLAM (USLAM) [15]: state-of-the art event-
based VIO that demonstrated great performance under
aggressive motion (input: RGB images, event data, and
IMU data),

4) VINS-Fusion [18], [28]: a leading RGB and IMU-
based VIO (input: RGB images from a mono camera
and IMU data)

All algorithms have been evaluated qualitatively and quanti-
tatively on MVSEC.

Fig. 6 shows the pose estimation results in terms of 3D
trajectory, position, and orientation on indoor flying sequence
data. In Fig. 6(a), only the ground truth, our proposed
method, and partial ESVO trajectories are shown, as the posi-
tion errors of the other two algorithms are clearly worse than
ours, which can be found in the position plots (Fig. 6(b)).
Table I presents the quantitative results for all four indoor
sequences, and both ATE and RPE are presented. Our method
achieves less than 9.16 cm absolute trajectory error and
outperforms all other algorithms in terms of both position
and orientation. USLAM shows the best relative rotation
error in flying4, which is a short and fast flying sequence
where the IMU can provide accurate orientation information.
Furthermore, algorithms that incorporate IMU sensor data
are able to achieve decent orientation performance even when
their ATE is large.

One interesting finding of USLAM is that it can be
initialized even when most of the camera’s view is toward
the ground, which does not contain many features. However,
USLAM diverges in the middle of flying2 and flying3
datasets, as indicated by the − symbol. This may be due

Infrared filter RGB-D Camera (D455)
Event camera (DVXplorer)

Mini-cheetah

Fig. 7. Experimental setups. Event camera and RGB-D camera are
attached to the top of the Mini-cheetah robot. We use an infrared filter
to filter out the infrared array spread by a depth camera.

to improperly performed feature detection because, when the
feature distribution is poor, the condensed features in a small
image region do not provide sufficient constraints to obtain a
6-DoF pose. VINS-Fusion shows good tracking performance,
but the gradual drifting of position estimation leads to high
absolute trajectory error.

We consider ESVO to be the strongest competitor, as
it achieves decent results on flying1 and flying3 datasets
although it diverges in the middle of flying2 and flying4. As
shown in Fig. 6(a), the trajectory exhibits significant vibra-
tion, which indicates unstable tracking. This can be attributed
to the inability of the time surface to retain information over
long periods, rendering tracking and triangulation vulnerable,
particularly in slow motion.

B. Experiment on Our Quadruped Dataset

We collect data from an event camera with 320 × 240
resolution (DVXplorer Lite) [29] and a Realsense D455
camera mounted on top of the Mini-Cheetah robot as shown
in Fig. 7. The data was collected while the robot perform
a range of dynamic motions, including trotting, pronking,
bounding, and backflips. Notably, the backflip, pronking,
and bounding motions involve significant aerial phase, with
angular velocities up to 510 °/s in backflips and 260 °/s in
bounding.

In the evaluation of pose estimation algorithms on our
quadruped robot dataset, we compare the performance of
our algorithm against VINS-Fusion and USLAM. In VINS-
Fusion, we input RGB images and IMU data, while USLAM
takes an event stream and IMU data as input since the event
camera we are using does not have an RGB stream.

Note that our evaluation is conducted on a sequence
of trotting, bounding, and pronking motions. Trotting is a
relatively gentle walking gait, while bounding and pronking
are more dynamic locomotion, as evidenced by the position
and orientation change in Fig. 8. The experiment starts with
trot gait and the gait is switched to bounding motion in 20 s.
For a better understanding of the quadruped gaits, we refer
to Fig. 5 in [30].

In the experiment, we found that performance of USLAM,
depicted by the green line in Fig. 8(a), significantly deterio-
rates as soon as the robot starts trotting. VINS-Fusion, on the
other hand, maintains reasonable estimation accuracy during
normal trotting but quickly diverges when the robot starts
bounding. Our algorithm, however, demonstrates remarkable
survivability and achieves an overall accuracy of 4.74 cm
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is large and involves significant impact disturbance during proking. However, our method is robust enough to maintain the stable position tracking of the
robot.

TABLE III
COMPARISON ON OUR RECORDED DATASETS.

[RRPE : ◦/d, tRPE : cm/d, tATE : cm]

VINS-Fusion OURS
Rrpe trpe tate Rrpe trpe tate

backflip1 2.46/2.87 4.17/− 16.75/− 1.45 1.99 8.51
backflip2 2.01/1.90 2.60/− 12.36/− 1.18 1.75 5.31
running1 0.82/− 1.42/− 22.08/− 0.75 0.55 4.65
running2 1.01/− 0.44/− 15.51/− 0.71 0.56 4.74
bounding − − − 0.66 0.42 2.26
pronking − − − 0.84 0.92 6.90

running1 and running2 are a combination of different gaits, including
trotting, bounding, pronking, etc. The symbol / separates evaluation on
partial trajectory and full trajectory, where the partial trajectory is manually
cut before the algorithm diverges significantly. The symbol – indicates that
the algorithm fails at an early stage of the experiment.

across all gaits. One potential reason for the failure of the
other two algorithms is that the impact disturbance from
touchdown is too large to maintain stable estimation because
SLAM algorithms including USLAM and VINS-Fusion have
been developed for wheeled robots or drones, which experi-
ence little impact disturbance during maneuvering.

USLAM wraps events onto the image plane and utilizes
the IMU to perform motion compensation to obtain a sharper
event image, which can be challenging for feature detection
and tracking. The motion of legged robots contacting with
the ground can be quite random, resulting in an inconsistent
event image between adjacent frames. Moreover, contacting
with the ground generates noisy IMU data, which renders the
strategy of using IMU for motion compensation ineffective,

particularly without the RGB input.

VINS-Fusion succeeds in maintaining stable tracking dur-
ing gentle trotting motion based on the RGB stream, but
the more agile motion causes image blur, leading to feature
tracking and pose estimation failure. In contrast to feature-
based methods, the direct method that we use does not
rely on feature detection and tracking. Instead, it utilizes
all the available edge information in the image to provide
constraints on the tracking module. This approach can be
advantageous in situations where feature detection and track-
ing become challenging, such as in the case of aggressive
motions where the images may become blurred. By using all
the available edge information, the direct method can provide
more robust pose estimation even in challenging scenarios.
In addition, our algorithm takes advantage of both RGB-
D data and event streams as input to constrain the tracking
module. Specifically, the image blur caused by the aggressive
motion lies on the texture of the image that is perpendicular
to the motion, where many events are generated to provide
constraints, making our algorithm effective during bounding
and pronking.

The proposed system is tested with an Intel Core i7-
5820K CPU on a desktop computer. The proposed algo-
rithm sequentially processes the data queue, with the overall
optimization completed within 10 ms and the RGBD-only
tracking algorithm completed within 12 ms. In RGBD and
event fusion mode, the tracking module takes approximately
80 ms. While the current running time is suboptimal, further



improvements can be made to achieve real-time performance.

IV. CONCLUSIONS AND DISCUSSIONS

We present a novel event camera-based visual odometry
approach that utilizes both RGB-D and event data to en-
hance pose estimation accuracy. Our method incorporates
a pixel-wise adaptive time surface generation strategy and
efficient pixel selection method to provide more robust key
points for the tracking module, particularly during aggressive
motion. Our results demonstrate significant enhancement in
accuracy and robustness over the sudden movements of a
robot compared to prior visual odometry algorithms. We
expect a meaningful extension of the legged robot application
because of the improved pose estimation of agile systems,
which has been a less highlighted and unsolved problem in
the traditional SLAM domain.

Due to limited access to codes and a compressed devel-
opment timeline, we were unable to complete the evaluation
of several recent algorithms [16] [23] [31] on our dataset.
Continuous efforts will be made for further evaluation and
comparison with other approaches in the future. Also, we
plan to integrate an IMU sensor into the proposed method to
exploit effectively its high-accuracy angular velocity mea-
surement to the axes that are orthogonal to the gravity
direction.
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