

Effects of Verbal & Non-Verbal Communication on Emotion Regulation in Early Childhood

University of Massachusetts Amherst BE REVOLUTIONARY

Sherley de la Rosa Mejia and Adam S. Grabell, PhD Department of Psychological & Brain Sciences, University of Massachusetts - Amherst Lee SIP

Abstract

Children use behavioral strategies (e.g., verbal and non-verbal communication) to regulate their emotions¹. Research has found language ability² and non-verbal³ communication (e.g., gaze) to be predictors of children's emotion regulation (ER) skills. However, it is unclear how verbal and non-verbal communication affect children's real time ER.

This study aimed to examine whether verbal and non-verbal communication are predictors of adaptive ER. Seventy-eight children (ages 3.5-5) completed a frustration-eliciting task⁴ while neural and physiological activity were simultaneously recorded. Caregivers rated children's ER⁵. Verbal communication predicted higher PFC activation, while non-verbal communication predicted lower PFC activation following negative feedback (p<0.05). Results suggest that verbal behaviors are adaptive, while non-verbal behaviors are maladaptive predictors of neural activity.

Methods

- Children completed the frustration task "incredible cake kids" ⁴ on a touchscreen computer.
 - The task consisted of choosing the "most delicious cake" for virtual customers, who gave predetermined positive or negative feedback.

- A coding system was created to code children's verbal and non-verbal responses to frustration. Behaviors were defined as follows:
 - Verbal Behaviors: (speech); number of words, sentences and repetition.
 - Non-Verbal Behavior: (gaze); instances of eye contact.
- Participant's prefrontal cortex (PFC) activation and physiological reactivity and recovery were recorded via functional near-infrared spectroscopy (fNIRS) and Galvanic Skin Response, respectively.
- Caregivers completed the Child Behavior Questionnaire⁵.

Results

Table 1: Linear Regressions Between Verbal & Non-Verbal Behaviors, and Neural Activation								
	Stand. Beta	Std. Error	t	Sig.	R-Squared			
Left PFC Activation					0.2			
Verbal Behavior	0.3	0.4	2.2	0.03*				
Non-Verbal	-0.3	0.7	-2.4	0.01**				
Right PFC Activation					0.1			
Verbal Behavior	0.3	0.4	2	0.05***				
Non-Verbal	-0.2	0.7	-1.6	0.1				
Note: Sig. at the *0.05, **0								

Table 1: Results show that verbal behavior significantly, positively predicted high PFC activation, while non-verbal behavior significantly, negatively predicted low PFC activation following negative feedback (p < 0.05).

Table 2: Crosstabulation				Table 2: We found that	
Non-Verbal		children expressed mostly			
		No	Yes	Total	verbal or non-verbal
Verbal	No	11	12	23	
	Yes	46	9	55	behaviors ($N=58$), not both
Total		57	21	78	(N=9).
Table 3: Ch	ni-Square	Test	- pa		

Table 3: Chi-Square Test			
	Value	df.	Asymp. Slg. (2 sided)
Pearson's Chi-square	10.571	1	0.001
Continuity Correction	8.829	1	0.003
Likelihood Ratio	10.006	1	0.002
Linear-by-Linear Assoc.	10.435	1	0.001

Table 3: The results of the Chi-Squared Test of Association (2x2), show there's a significant association between verbal and non-verbal communication $(X^2(1,78) = 10.57, p = 0.001)$.

Discussion

In general, our findings suggest that children use more verbal than non-verbal communication to express frustration.

- Results suggest that verbal behaviors lead to better emotion regulation; this may be a result of active processing which assumes that attention and plasticity affect how listeners cope with adverse situations⁷.
- Lastly, non-significant results were found when comparing verbal and non-verbal communication with physiological reactivity (GSR) or parents ratings. Further research is needed in order to understand this lack of association.

Future Directions

- Focus on the effects of verbal and non-verbal effects as a result of positive feedback.
- Further research is needed to investigate why verbal behaviors predict effective ER, while non-verbal behaviors do not.

Acknowledgements

Special thanks to Dr. William Lee, for his generous donation to create the Lee Science Impact Program; Dr. Adam Grabell (Faculty Mentor), Adrelys Mateo Santana (Laboratory Coordinator), and Dr. Linda Ziegenbein (Program Director) for their dedication, leadership and passion towards this research experience.

References

- 1. Sala, M. N., Pons, F., & Molina, P. (2014). Emotion regulation strategies in preschool children. *The British* journal of developmental psychology, 32(4), 440–453. https://doi.org/10.1111/bjdp.12055
- 2. Monopoli, W. J., & Kingston, S. (2012). The relationships among language ability, emotion regulation and social competence in second-grade students. International Journal of Behavioral Development, 36(5), 398–405. https://doi.org/10.1177/0165025412446394
- 3. Morales M., Mundy P., Crowson M., Neal R. A., & Delgado C., (2005) Individual differences in infant attention skills, joint attention, and emotion regulation behaviour, *International* Journal of Behavioral Development, 29:3, 259-263, DOI: 10.1080/01650250444000432
- 4. Grabell, A. S., Huppert, T. J., Fishburn, F. A., Li, Y., Hlutkowsky, C. O., Jones, H. M., Wakschlag, L. S., & Perlman, S. B. (2019). Neural correlates of early deliberate emotion regulation: Young children's responses to interpersonal scaffolding. Developmental cognitive neuroscience, 40, 100708.
- 5. Striano, T., Kopp, F., Grossmann, T., & Reid, V. M. (2006). Eye contact influences neural processing of emotional expressions in 4-month-old infants. Social cognitive and

affective neuroscience. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2555439/.

- 6. Putnam, S. P., & Rothbart, M. K. (2006). Development of Short and Very Short forms of the Children's Behavior Questionnaire. Journal of Personality Assessment, 87 (1), 103-113.
- 7. Heald, S. L., & Nusbaum, H. C. (2014). Speech perception as an active cognitive process. Frontiers in systems neuroscience, 8, 35. https://doi.org/10.3389/fnsys.2014.00035