Introduction

Large exact number acquisition has been shown to rely on the use of language and formal mathematical schooling

- The Pirahã Amazonian tribe do not have number words or singular-plural distinction in their language and cannot represent large numbers exactly (Frank et al., 2008)
- The Mundurukú, have number words up to only five - while they can accurately approximate groups of objects above their numeral range, they are unable to provide exact numbers for those objects (Tosto et al., 2014).

Study Aim: Determine the influence of the numeration system on children's large number representation and generation across development

Numerical Syntax
Provides an algebraic
representation of large numbers

- multiplicative merge: merge between a number and multiplier (ex. three thousand)
- additive merge: merge between a phrase and a number (ex. thirty-three)

Phrase Structure Rules (Hurford, 2007):

Arabic Numerals
Provides an algorithmic representation of large numbers

- Arabic numerals are based on a place value system
- This allows children to isolate power dimensions (ones, tens, hundred, etc.), making mathematical operations easier

Dimensional Representations:

Methods

- An online asynchronous study was shared on a scientific platform Lookit! - An online asynchronou

"write a larger number!"

"say a larger number!"

Results

Figure 1.

Do children change the syntactic structure of the probe in their response? (ex. $500 \rightarrow 501$)

Children's Verbal Response Syntax

Figure 2.

When children keep the syntactic structure the same, what do they change? (ex. head digit: $500 \rightarrow 600$)

Conclusions

- Many children retain the syntax of the probe indicating a linguistic representation of numbers.
- Children are more likely to change the head digit than the head multiplier or last digit when they retain the same syntactic structure ($\mathrm{X}^{2}=139.17, \mathrm{df}=2$,

Future Directions

- Future analysis may include computing conditional probabilities for child response given probe (ex. \# of additive merges, multiplicative merges, etc.) - Plans for more causal methods - training on complex numerical syntax to see if that influences and assists earlier acquisition of large number concepts.

Acknowledgements

Special thanks to Dr. William Lee, for his generous donation to create the Lee Science Impact Program; Jenna Croteau for her continuous guidance and support in the lab; to Dr. Joonkoo Park for providing me with the opportunity to grow my interests in research.

References

 Tosto, M. G., Petrill, S. A., Halberda, J., Trraskowski, M., Tikhomirova, T. N., Bogdanova, O. Y.,... \& Kovas, Y. (2014)Why do we differ in number sense? Evidence from a genetically sensitive investigation. Intelligence, 43, 35-46. Frank, M. C., Everett, D.L., Feedorenko, E., , Gibson, E. (2008). Number as a cognitive technology: Evidence from
Pirahă language and cognition. Cognition, $108(3)$, $819-824$.

