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MOTIVATION
• Non-uniform growth has been used as a way of creating different kinds of 

shapes. 

• It is possible to experimentally recreate growth processes by manipulating 
area ratios between different surfaces. 

• It is desirable to find optimal growth patterns that would yield a desired 
shape while keeping the area distortion as small as possible.
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CHEBYSHEV’S PRINCIPLE

AREA DISTORTION

SYSTEM SIZE DEPENDENCE
of the area of the sphere requires large distor-
tions. Thus, we can approximate the metric by
excising the small regions of the square where
Ω falls below the experimentally accessible range,
as shown in Fig. 3B. The resulting swelled shape
(Fig. 3A) does indeed approximate that of a
sphere (see fig. S3 for plots of surface curvatures)
with four small regions removed, although the
four corners of the square do not quite close.
The reason for the latter behavior remains under
investigation but may arise from the excised
singularities and/or the finite bending energy of
the sheet. Nonetheless, the contrast between the
nearly closed shape achieved in Fig. 3A and the
limited spherical caps that may be obtained for
the same material system with an axisymmetric
metric highlights the importance of 2D pattern-
ing, even for generating axisymmetric shapes.

Beyond fabricating simple shapes with con-
stant target Gaussian curvature, our approach
opens the door to shapes of arbitrary complex-
ity. Although numerous fundamental questions
and practical challenges remain to establishing
the necessary design rules, we take a first step
toward the construction of shapes whose swell-
ing factors are not known a priori by consid-
ering a corrugated surface (Fig. 3C) described
by the height function H(x,y) = H0 [cos(2px/L) +
cos(px/L + √3py/L)], where 2L is the width of
the sheet. We choose H0 = 60 mm and L = 300
mm. Determining an appropriate swelling factor
is equivalent to finding a conformal coordinate
system on the surface (as described in the SOM)
and yields the swelling function shown in Fig.
3H. This example highlights some of the re-
maining challenges in designing arbitrary 3D

shapes, because sheets patterned according to
Fig. 3H often fail to form the desired shape upon
swelling. The three local maxima in growth,
lying along the line cutting diagonally through
the center of the sheet, each represent regions
of positive target Gaussian curvature; however,
each may achieve its desired local curvature by
buckling either upward or downward. Indeed,
rather than buckling in the manner described by
H(x,y), these local maxima in swelling may
instead all buckle in the same direction, as shown
in Fig. 3G (again, possibly reflecting a preference
for buckling in one direction due to slight
through-thickness variations in swelling). How-
ever, in some cases, the sheets do swell into the
corrugated conformation shown in Fig. 3E, which
is very similar to the programmed surface H(x,y),
as can also be seen by comparing the targeted

(Fig. 3D) and measured (Fig. 3F) Gaussian cur-
vatures. The use of a glass micropipette to hold
the patterned sheet against the substrate during
swelling (upon cooling from 40° to 22°C) tends
to constrain the sheet to swell into the corrugated
shape, and initially misfolded sheets can also be
“snapped through” into the desired configura-
tion by application of force to the center-most
region of positive curvature. Thus, we conclude
that such surfaces with complex swelling pat-
terns may in general form multiple different shapes
that are locally metastable and that additional
constraints may therefore be required to ensure
that a specific shape is chosen.

Finally, we demonstrate the responsiveness
of the patterned sheets to changes in temperature
using another nonaxisymmetric metric that com-
bines that for an Enneper’s surface with four

Fig. 3. Nonaxisymmetric swelling patterns. (A) A 3D reconstructed image of
the nearly closed spherical shape formed by the metric of Eq. 6 and shown in
(B); the sizes and positions of open circles correspond to those of the low-
swelling dots. Before swelling, the patterned gel sheet was 9 mm thick, with
lateral dimensions of 600 by 620 mm. (C) The target height profile of the
corrugated surface, also shown in (D) top view. The grid represents the co-
ordinate lines of the conformal coordinate system. (E) 3D reconstructed image

and (F) Gaussian curvature of the sheet swollen into a shape similar to the
target surface. (G) 3D reconstructed image of the shape adopted when each of
the three regions of positive curvature along the center diagonal buckle in the
same direction. (H) The swelling pattern used to generate sheets in (E) to (G).
The sizes and positions of open circles correspond to those of the low-swelling
dots. Before swelling, the patterned gel sheets were 9 mm thick and had
lateral dimensions of 600 by 580 mm.

Fig. 4. Thermal actua-
tion of patterned sheets.
(A) When the tempera-
ture of the aqueous me-
dium is increased, the
hybrid Enneper’s surface
deswells and recovers its
flat shape by 49°C. (B)
Upon lowering the tem-
perature to 22°C, the disk
swells back to the initial
hybrid shape through a
different pathway. Initial
thickness and disk diam-
eter are 7 and 390 mm,
respectively.
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of Ω(r) at each lattice point according to Eqs. 3
and 4, determining the corresponding value of
flow from the fit of Eq. 2 to the data in Fig. 1H,
and finally setting the size of the dot at that
lattice point according to Eq. 1. Because the
power-law metrics in Eq. 3 diverge or vanish at
the origin, it is necessary to cut out a small re-
gion around the center of each of the two cones.

The shapes adopted by the corresponding gel
sheets (Fig. 2, A to D) are measured by laser scan-
ning confocal fluorescence microscopy (LSCM)
and analyzed as described in the SOM. Each of
the four surfaces shows only small deviations
about an average Gaussian curvature, with the
exception of the regions near the free edges,
where our analysis yields artifactual curvatures
(due to the finite thickness of the gel sheets, the
surface meshing procedure used yields addition-
al points on the edges that do not accurately
reflect the 2D geometries of the sheets). After
excluding regions of the surface within 2h of the
edges to avoid these artifacts, we find the aver-
age Gaussian curvatures of the spherical cap and
saddle to be 6.2 mm−2 and –20.6 mm−2, respec-
tively, with nearly axisymmetric distributions
of curvature (fig. S2A). Both values are in rea-
sonable agreement with the target values, al-
though the tendency of disks with uniform dot
sizes to show slight curvatures (with radii of 2
mm) suggests the presence of slight through-
thickness variations in swelling (see SOM for
details) that may contribute to the observed de-
viations from the programmed curvature. Inter-
estingly, we do not observe a boundary layer
with negative Gaussian curvature around the
edge of the spherical cap as has been reported

for truly smooth metrics (17, 18), possibly re-
flecting the influence of the through-thickness
variations in swelling. For both cones, the av-
erage Gaussian curvatures, excluding regions at
the free edges, are close to zero. Further, Fig. 2E
shows a plot of the deficit angle d measured for
five different cone metrics with power law ex-
ponents −1 ≤ b < 0, which agrees closely with
the programmed value d = −pb.

We next consider metrics of the form

WðrÞ ¼ c½1þ ðr=RÞ2ðn−1Þ&2 ð5Þ

corresponding to Enneper’s minimal surfaces
with n nodes. These surfaces all have zero mean
curvature and so are expected to minimize the
elastic energy for these metrics at vanishing
thickness (18). Although Eq. 5 is axisymmetric,
Enneper's surfaces spontaneously break axial
symmetry by forming n wrinkles. In Fig. 2, G
to J, we demonstrate patterned surfaces with n =
3 to 6, each of which reproduces the targeted
number of wrinkles. As shown in the maps of
curvature in Fig. 2 (and azimuthally averaged
plots in fig. S2B), each surface has small mean
curvature and negative Gaussian curvature that
matches closely with the target profile. For a
given film thickness, increasing n eventually
leads to a saturation in the number of wrinkles,
because the bending energy arising from Gaussian
curvature increases with n (for the films with
h ≈ 7 mm in Fig. 4, a metric with n = 8 yielded
only six wrinkles). However, given the subtle
differences between the metrics plotted in Fig.
2F, the ability to accurately reproduce the pro-
grammed number of wrinkles for n = 3 to 6 is a

strong testament to the fidelity of the metrics
patterned by this technique.

The true power of our approach lies in the
fabrication of nonaxisymmetric swelling pat-
terns. As a simple demonstration, we first con-
sider the problem of how to form a sphere
through growth. For the axisymmetric metric
described in Eq. 4, the maximum value of r/R
to which this metric can be experimentally pat-
terned is restricted by the accessible range of
swelling. In our case, this range is Ωhigh/Ωlow ≈
3.7, limiting the maximum portion of a sphere
that can be obtained to slightly less than half.
Although further improvements in the material
system are likely to increase the available range,
the axisymmetric metric is inherently an ineffi-
cient way to form a sphere, because as one seeks
to go beyond a hemisphere and toward a closed
shape, the required swelling contrast diverges
rapidly. Given access to 2D metrics, however, a
number of well-established conformal mappings
of the sphere onto flat surfaces are known from
the field of map projections. For example, the
Peirce quincuncial projection (27) maps a sphere
of radius R onto a square using the metric

Wðx; yÞ ¼ 2
jdn xþiy

R j 1ffiffi
2

p
" #

sn xþiy
R j 1ffiffi

2
p

" #
j2

1þ jcn xþiy
R j 1ffiffi

2
p

" #
j2

h i2 ð6Þ

where sn, cn, and dn are Jacobi elliptic func-
tions, and x and y are the components of r. This
metric still has four cusp-like singularities where
Ω(r) = 0; however, one of its useful properties
as a map projection is that only a small portion

Fig. 2. Halftoned disks
with axisymmetric met-
rics. Patterned sheets pro-
grammed to generate (A)
a piece of saddle surface
(Sa), (B) a cone with an
excess angle (Ce), (C) a
spherical cap (Sp), and
(D) a cone with a deficit
angle (Cd). (Top) 3D re-
constructed images of
swollen hydrogel sheets
and (bottom) top-view
surface plots of Gaussian
curvature. Initial thick-
nesses and disk diame-
ters are 9 and 390 mm,
respectively, although
the apparent thickness
of sheets is enlarged due
to the resolution of the
LSCM. (E) Measured val-
ues of deficit angle d
for cones with five dif-
ferent exponents b (see Eq. 3) (black solid circles) and the programmed
values (blue dashed line). (F) Swelling factors for the target metrics as a
function of normalized radial position on the unswelled disks r/R, with points
plotted at values corresponding to lattice points to indicate the resolu-
tion with which Ω is patterned. (G to J) Patterned sheets programmed to

generate Enneper’s minimal surfaces with n = (G) 3, (H) 4, (I) 5, and (J) 6
wrinkles upon swelling as dictated by Eq. 5. 3D reconstructed images (top)
and top-view surface plots of squared mean curvature H2 and Gaussian
curvature K (bottom). Initial thicknesses and disk diameters are 7 and 390 mm,
respectively.
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To set h(z), note that the local, areal growth, U, obtained in
any experiment must be bound betweenUmin#U#Umax. For K
¼ 0 surfaces, such as those we are considering, the cores of each
singularity can never be accommodated in a nite range of
growth and, so, those cores must be excised. Since these cores
represent the smallest and largest swelling in any growth
pattern associated with eqn (3), we can formulate our search for
an optimal growth pattern to be one that minimizes the area
that must be excised around the singularities.

If we naively set h(z) ¼ 0, U(z, !z) decreases to zero as |z|
becomes large. This immediately suggests the use of virtual
singularities of opposite charge just outside the boundary of the
domain, so that U(z, !z) / 1 as |z| / N. The closer we are able
to place these virtual singularities, the more uniform the growth
will be. We proceed with the ansatz

|eh(z)|2 ¼ |z3 " D3|"1, (10)

where D > R is chosen outside of the material domain. The
closer D is to R, the more uniform U(z, !z) will be away from the
vicinity of the singularities. The associated mapping is

vgðzÞ ¼
!
z3 "D3

z3 " R3

"1=2

: (11)

From eqn (8), we identify each singularity with a wedge of
decit angle p, consistent with identifying the two halves of

each side of the triangle about its midpoint. With the virtual
singularities, however, the entire side is not identied. Indeed,
consider the radial length L between the boundary of the core of
the singularity and the outer boundary of Fig. 4b in the sheet
aer it has grown to its nal buckled conguration. Eqn (9)
gives

L ¼ R

ðB=R

1

dx

$$$x3 " ðD=RÞ3
$$$

jx3 " 1j
: (12)

This length Lmust agree with the length of sides in Fig. 4a to
be identied. In particular, these lengths are identical because
the w-plane does not grow at all. This has the propensity to alter
the resulting shape somewhat from a completely closed tetra-
hedron when the thickness is nite (Fig. 4c, inset). Thus,
eqn (12) identies one essential trade-off: we can make the
tetrahedron growth pattern arbitrarily uniform by taking D and
B / R while simultaneously keeping the image singularities
outside the boundary. However, we do this at the expense of
shortening L, the length of sides that is identied in Fig. 4a.

Beyond this, there is a second trade-off related to the reso-
lution necessary to encode the growth pattern. The maximum
growth occurs on the boundary of the positive Gaussian
curvature singularities and the minimum near the virtual
singularities. Therefore, the closer a virtual singularity is to a
real singularity, the more rapid the change in the growth
pattern between them. We expect, therefore, that even though a
more uniform pattern overall can be achieved by introducing
virtual singularities, the region between the singularities and
defects must still be accurately represented. Mathematically, we
can compute how quickly distance from the singularity at z ¼ R
changes as a function of U,

dx

dU
¼ D3 " R3

3
h
ðU" 1Þ4ðD3 " UR3Þ2

i1=3 : (13)

Thus dU/dx / N as D / R. How to put a bound on dU/dx
clearly depends on the details of a material system, but it is clear
that the closer D is to R, the more detailed the growth pattern
must be near the boundaries of the sample. This suggests that,
at least generically, the resolution to which the metric can be
programmed must be balanced with the range of swelling
available.

To corroborate our theoretical results, we have simulated the
growth pattern in eqn (11) with D/R ¼ 1.75 and boundary B ¼ D
(Fig. 4c, inset). The tetrahedron does not close. To corroborate
this shape, we also folded a tetrahedron from a thin elastic
sheet of poly(vinyl siloxane) (Elite Double 32, Zhermack) using
the pattern in Fig. 4a. Attaching the relevant corners with
narrow strips of silicone adhesive (ARclad IS-8026, Adhesives
Research, Inc.) results in a remarkably similar open tetrahedron
(Fig. 4c). One way to close the tetrahedron would be to use a
larger range of growth, which would allow us to develop shapes
equivalent to identifying a larger length along the boundaries of
Fig. 4a. Alternatively, increasing the Gaussian curvature at each

Fig. 4 (a) Fold pattern for a tetrahedron with singularities removed.
We have only identified the segments of the sides of length L, which
are indicated by thick, blue lines. (b) The growth pattern and domain
corresponding to (a) for B/R¼ D/R¼ 1.75. The holes and boundary are
chosen so that, Umax/Umin ¼ 3 to correspond with our experimental
system. (c) Results of numerical minimization of (b) for a tetrahedron of
thickness 0.08R (inset) and the result of folding (a) in poly(vinyl
siloxane). (scale bar: 10 mm) (d) on the other hand, numerical mini-
mization in which each of the three positive singularities having
Gaussian curvature 1.3p closes comparatively well.
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We start with a triangulation 
of a topological surface

We find a Circle Packing 
of tangent circles.

!

!

The Circle Packing concept  
can be used to construct  
discrete conformal mappings

!
Stereographic Projection

⌦(x, y) =
4

(1 + x

2 + y

2)2
,

Infinitesimal Circles are distorted according to  
a conformal factor.

Close to the north pole of sphere the distortion  
is bigger by a factor of 4. 

• We want to construct discrete conformal transformations that 
minimize the area distortion when going from one circle packing 
to another. The area distortion can be reduced by making cuts.

• According to Chebyshev principle, this map is characterized by the 
property that its conformal factor along the boundary is a 
constant.

• We can see how the area distortion decreases by different 
amounts as we introduce more radial cuts and vary their length.

• Furthermore, it is possible to see that there is a continuum limit 
when we fix the number of cuts and change the system size.

PERSPECTIVES
• We want to find efficient ways of making cuts on contact 

networks in order to minimize the area distortion as much as 
possible. 

• The ability of choosing target area ratios before making any kind 
of cuts is also under investigation since it could bring more 
freedom when designing specific shapes.
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