Systems with long-range forces
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Bare dispersion with Dirac points Hamiltonian: U(r) < e?/r
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Benchmarking the BDMC technique: Semimetal-Insulator transition
(against the Hybrid MC results: M.V. Ulybyshev et al, PRL 111, 056801 (2013))
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BDMC order (N=3); 1% order schemes (GW or RPA) are inadequate.

Graphene and graphene-type systems

Stability of Dirac liquids with strong Coulomb interaction

Dirac liquid = linear in momentum low-energy electronic spectrum (semimetallic state).
Is it stable against the strong long-range part of Coulomb interaction?

To suppress short-range correlations consider flat-top potential at short-range, V(r<2a) = U(2a), and Coulomb otherwise.

Dimensionless parameter g = F2/i ) 1'10) = \/5(!:‘/2 (0, is about 2.2 in suspended graphene).

Introduce effective coupling constant a=e?/v, where v is the Fermi velocity. 2d Dirac fermions cannot screen the
Coulomb part and quasiparticle properties get strongly renormalized.
BDMC RG flow of & with system size L
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A: With increasing the system size, the effective coupling a always flows towards 0; i.e., the 2d Dirac liquid is an
asymptotically free T=0 state (I. Tupitsyn and N. Prokof’ev, PRL 118, 026403 (2017)).

Jellium model for electrons
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Known issue with the GW approximation: Incorrect prediction of dielectric response, (k, ®) = 1 - (4ne?/k?) T1(k, ®).
Key finding: At small momenta the polarization function is orders of magnitude larger than expected from
nk?/mw,?, and (4ne?/k?)I1(k, ®) tends to diverge. The problem can be traced back to the fact that the GW
approximation does not respect the dynamic particle number conservation law, implying that I1(k=0,t) should be
constant (IT = -x/(1-Vy) and y(k=0,t) = <N(0) N(t)>).

Workaround: Enforce physical behavior by performing simple transformation before calculating the dielectric
response: [1(k, ®,) = I(k, ®,) - T1(0, ®,) + 1(0,0)3, , In higher orders calculations the correction term vanishes.
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Analytical continuation of g(k,®,). Red dashed line: original GW. Black solid line: corrected GW spectrum.
After correction, the high-frequency tail of Im g(k, @) = &” gets suppressed by nearly two orders of magnitude

and the plasmon mode gets correctly reproduced with 10% accuracy (K. Van Houcke, 1.S. Tupitsyn, A.S. Mishchenko, and
N.V. Prokof'ev, arXiv:1607.01183).

Hydrogen chain
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with £, f and U] "' * being the hopping and bare interaction matrix elements in the chosen basis ({i,k,I} —
site/atom indices; {(x By,S} orbital indices; {c,5"} - spins).

The configuration space of skeleton diagrams is sampled stochastically in BDMC, starting from vertex corrections to
the sc-GW. The sc-GW result depends on zero Hamiltonian terms that create or annihilate two electrons in the
same state. In H’ these terms are explicitly dropped; H and H’ have identical properties in exact solution.

H - “material science” choice; H’ - lattice community approach Equation of state in TDL, STO-6G basis

energies per atom obtained with unrestricted summation over
(u,v) (in the Dyson equation for screened effective interaction ~ -0-52
W) and with u*=v*=2 coincide at the level of ~10 even at the
smallest values of lattice constant R.
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The difference between the two sc-GW answers can be used as 02 ] * % SCc-GW(H)
an estimate of the method accuracy (see Figure). 036 & A sC-GW(H)
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The BDMC result in higher orders (BDMC_; BDMC, = sc-GW(H’)) converges to the DMRG answer.
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