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Exciton hopping in 2D assemblies

Future Directions

• We use photoluminescence (PL) and 
scanning probe techniques to probe 
packing structure and exciton 
dynamics in nano-cluster and nano-
wire assemblies of organic 
semiconductors.

• Analogous to single-molecule 
spectroscopy, we interrogate isolated 
nanosystems to probe directional 
interactions referenced to the pi-
stacking directions

• How can chromophore coupling be 
“tuned” to selectively enhance 
charge/exciton transport?

• Disentangling “bright” and ”dark” 
interactions in nanoscale assemblies? 250 nm

250 nm

Directional control of energy/charge transport 
in organic semiconductors

• Role of molecular packing 
geometry? Programmed by 
molecular architecture?

• Role of sign, magnitude, and 
direction of different 
intermolecular couplings

• Isolated crystalline nanowires 
as a material platform 

• optical polarization (excitation 
or emission) referenced to 
specific crystallographic 
directions.

Dipole-dipole coupling in pi-stacked assemblies
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Vibronic signatures of directional coupling in organic 
semiconductor aggregates

F. Spano, Acc. Chem. Res. 43, 429 (2010)
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Time- and polarization resolved probing of directional coupling

Dipole – dipole coupling alone
preserves polarization in emission!
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Time-dependent polarization contrast:

M[ti + dt] = (Npara[ti + dt] – Nperp[ti + dt])/
(Npara[ti + dt] +  Nperp[ti + dt])

Excitation/emission 
polarization referenced 
to specific 
crystallographic axes

? Dipole coupling (H OR J) 
only predicts ≈ stationary 
M [t]; while HJ (combined 
dipole at CT coupling) 
predicts significant 
polarization mixing.

• Combined dipole and CT coupling 
give rise to 2D absorption and 
emission dynamics

• Emission along ’dark’ (pi-stacking) 
axis follows power-law decay 
(Iy[t] ≈ t-(1+µ))  characteristic of 
two-body recombination; 

• indicates directional charge-
separation – without an interface 
(intrinsically driven exciton 
fission)

Ix[t] ≈ e-γtIy[t] ≈ t-(1+µ)

Anisotropic decay dynamics and directional charge separation in TAT nanowires

J. A. Labastide, H. B. Thompson, S. R. Marques, N. Collela, A. L. Briseno, and M. D Barnes, “Directional 
charge separation in organic semiconductor nanowires”, Nature Communications 7, 10629 (2016)
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In TAT xtals, Dipole 
and CT coupling act 
primarily along same 
(pi-stack) direction, 
but opposite signs, 
giving rise to weakly 
bound inter -
chromophore excitons

Disentangling ‘bright’ and ’dark’ couplings in 
organic nanowires

Packing geometry dictates different coupling 
magnitudes along different crystal packing 
directions -> anisotropic energy transport

• Comparing isolated (uncoupled) molecule to TAT crystal, expect 
increase in SPC (decrease in WF) of <th>; theory predicts +75 meV

• Combined effect of HOMO shift and intrinsic doping (depends on 
volume)?
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Combined PL spectral and 
charge-force imaging

Applications to TAT nanoclusters and nanowires

• Vibronic intensity ratio (bright coupling) proxy for pi-stacking order
• Observe a positive (≈ + 200 mV) change (less negative) in HOMO 

for TAT xtals relative to disordered films
• Combined HOMO shift and intrinsic doping?
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DWF = + 220 meV

P. Wang, and M. D Barnes, “Disentangling bright and dark couplings in HJ 
aggregate assemblies”, to be published

• Temperature dependence of charge-separation/exciton 
regeneration

• Evolution of HJ (combined dipole and CT) coupling in TAT 
(and other) small-molecule semiconductors

• Near-field probes of anisotropic exciton mobility in 
crystalline nanowires

• Combined PL and EFM techniques to probe ground state 
coupling energies and correlation with packing structure 
(i.e., Rubrene polymorphs, other synthetic organic SCs)

M. Baghgar, and M. D Barnes, “Work function modification in P3HT HJ 
aggregate nanostructures revealed by combined Photoluminescence 
imaging and KPFM ”, ACS Nano 9, 7105 (2015)


