Location
LGRT 1032

About

Professor Martinez Outschoorn received her bachelor's degree in physics and mathematics in 2005 and her Ph.D. in physics in 2011 from Harvard University. She was a Lederman Postdoctoral Fellow at Fermi National Lab from 2011 to 2014. She was an Assistant Professor at the University of Illinois Urbana-Champaign from 2014 to 2017 and joined the Physics department at the University of Massachusetts Amherst in 2017.

Professor Martinez Outschoorn's research is in experimental high energy physics, focusing on the Large Hadron Collider at CERN. She is currently a member of the ATLAS Collaboration and has previously been a member of the CMS Collaboration.

Education

B.A. Harvard University 2005
Ph.D. Harvard University 2011
Lederman Postdoctoral Fellow at Fermi National Lab 2011 - 2014

Honors and Awards

Outstanding Research Award, UMass Amherst, College of Natural Sciences (2021)
National Science Foundation CAREER Award (2017)
Ranked Excellent Teacher by Students, University of Illinois Urbana-Champaign (2017)
ATLAS Thesis Award (2011)

Description of Current Research

I have been working at the Large Hadron Collider (LHC) at CERN since 2006. These years have been a very exciting era for particle physics with the construction, startup and running of the highest energy accelerator in the world. The LHC has given experimentalists access to energies that have never been explored before. The ATLAS and CMS experiments that I have worked on have already produced important discoveries and show potential hints of new physics. As experimenters at the LHC, we are all eagerly looking forward to collecting more data in the coming years to search for new physics that could help us better understand particle physics and possibly astrophysics and cosmology. The findings at the LHC could help answer important questions about the mechanism that gives rise to the observed light Higgs boson mass and the nature of dark matter.

My main physics interest is to search for new physics at the LHC. I am currently using the Higgs boson to search for new particles that could be indications of dark matter. I am also interested in searching for new particles that could explain why the Higgs boson is so light, like additional scalar particles or top partners. These signatures are often challenging to observe experimentally and require a detailed understanding of standard model backgrounds, particularly from events with top quark pairs.

I am working on improving the capabilities of the ATLAS experiment, focusing on the muon detectors. Muons are very powerful signatures of interesting events in LHC collisions and are therefore one of the most important triggers used to collect data. The LHC is expected to operate for many years and we will not be able to handle the large amounts of collisions expected in the future without the upgrades I am working on. We are designing and constructing upgrades to the trigger and readout of the muon spectrometer to improve its detection capabilities.

Selected Publications

Search for a new pseudoscalar decaying into a pair of muons in events with a top-quark pair at √s=13 TeV with the ATLAS detector, PRD 108 (2023) 9, 092007, arXiv:2304.14247(link is external)

The New Small Wheel electronics, JINST 18 (2023) P05012, arXiv:2303.12571(link is external)

DeXTer: Deep Sets based Neural Networks for Low-pT X→bb Identification in ATLAS, ATL-PHYS-PUB-2022-042 (2022)(link is external)

Exotic Higgs Decays, Annual Review of Nuclear and Particle Science 72 (2022) 119, arXiv:2111.12751(link is external)

Search for Higgs bosons decaying into new spin-0 or spin-1 particles in four-lepton final states with the ATLAS detector with 139 fb−1 of pp collision data at √s=13 TeV, JHEP 03 (2022) 041, arXiv:2110.13673(link is external)

Feebly-Interacting Particles: FIPs 2020 Workshop Report, Eur. Phys. J. C 81 (2021) 1015 , arXiv:2102.12143(link is external)

The CMS Phase-1 Pixel Detector Upgrade, JINST 16 (2021) 02, P02027, arXiv:2012.14304(link is external)

Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b channel with the ATLAS detector using pp collisions at √s=13 TeV, (2020), Phys. Rev. D 102 (2020) 112006, arXiv:2005.12236(link is external)

The Apollo ATCA Platform, PoS (2019) 120, arXiv:1911.06452(link is external)

Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the H → aa → 4b channel in pp collisions at 13 TeV with the ATLAS detector, JHEP 10 (2018) 031, arXiv:1806.07355(link is external)

Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at 13 TeV, JHEP 06 (2018) 166, arXiv:1802.03388(link is external)

Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, LHC Higgs Cross Section Working Group, arXiv:1610.07922(link is external)

Search for the Higgs boson produced in association with a W boson and decaying to four b-quarks via two spin-zero particles in pp collisions at 13 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 605, arXiv:1606.08391(link is external)

Search for top-squark pairs decaying into Higgs or Z bosons in pp collisions at 8 TeV, CMS Collaboration, Phys. Lett. B736 (2014) 371, arXiv:1405.3886(link is external)

Search for top-squark pair production in the single-lepton final state in pp collisions at 8 TeV, CMS Collaboration, Eur. Phys. J. 12 C73 (2013) 2677, arXiv:1308.1586(link is external)

Measurement of the inclusive W and Z/gamma cross sections in the electron and muon decay channels in pp collisions at 7 TeV with the ATLAS detector, Atlas Collaboration, Phys. Rev. D 85, 072004 (2012), arXiv:1109.5141(link is external)

Measurement of the muon charge asymmetry from W bosons produced in pp collisions at 7 TeV with the ATLAS detector, Atlas Collaboration, Phys. Lett. B701 (2011) 31, arXiv:1103.2929(link is external)

Measurement of the W and Z production cross sections in pp collisions at 7 TeV with the ATLAS detector, Atlas Collaboration, JHEP 12 (2010) 060, arXiv:1010.2130