
Aug 18 2010 review version – do not cite or quote

1

CHAPTER 8.

SUCCESSFUL AND ABANDONED SOURCEFORGE.NET PROJECTS
IN THE INITIATION STAGE

 Chapter 6 provided an open source project success and abandonment dependent

variable. Chapter 7 described data available in the Sourceforge.net repository and linked

these data to various independent variable concepts and hypotheses presented in the

theoretical part of this book. Chapter 7 also described the Classification Tree and Random

Forest statistical approaches we use in this and the following chapter. This chapter presents

the results of the Classification Tree analysis for successful and abandoned projects in the

Initiation Stage, which in Chapter 3 (Figure 3.2), we defined as the period before and up to

the time when a project completes a first release of its software. Readers are encouraged to

review Chapter 6 (especially Table 6.1) for specifics on how we operationalized this definition

as well as the other Initiation Stage dependent variable categories (e.g., Abandoned in

Initiation, Indeterminate in Initiation).

Results

 Trees and Random Forest Variable Importance Plots for the Initiation Stage reveal the

importance of the Project Information Index (PII) for discriminating projects that were

successful in the Initiation Stage. Here we provide a classification tree (Figure 8.1) that is

generally representative of the results we encountered after a number of different samples

from our SF dataset and tree generation. We then use Random Forests and a Variable

Importance Plot to verify the results of this tree. In the last part of this section, we examine the

Aug 18 2010 review version – do not cite or quote

2

effect of projects with missing or incomplete categorical data.

Figure 8.1
Initiation Stage Tree using Sampling Strategy #2

(see Chapter 7, Table 7.5)

 We constructed the above using a random sample of 2,000 projects taken from all

successful and abandoned projects in the Initiation Stage, but we excluded the Page Visits

and Downloads variables, because, as described in Chapter 7, Downloads are closely linked

with the definition of our dependent variable in the Initiation Stage, and Page Visits are highly

correlated with Downloads. As can be seen in this figure, the Project Information Index (PII) –

the total number of categorical subcategories chosen by project administrators to describe the

project – was the main splitting variable. Tracker Reports also helped to distinguish between

successful and abandoned projects. Recall that projects for which the splitting variable

expression evaluates to “true” are sorted into the left node of the tree (Figure 8.1). In other

Aug 18 2010 review version – do not cite or quote

3

words, 76% of the 520 projects that had a value less than 3 for the PII and also had less than

one Tracker Report were correctly classified as Abandoned in Initiation (AI). Using these two

variables – PII and Tracker Reports alone – seventy-five percent of the projects were

correctly classified (as shown by the “Model cc = 0.75” at top left in Figure 8.1). The Kappa of

0.435 in Figure 8.1 indicates that the model improved the classification accuracy by about

forty-three percent over chance.

 Although the overall classification accuracy is only fair, the Confusion Matrix in Figure

8.1 shows that our model classifies successful projects much better than abandoned projects.

Of the successful Initiation Stage projects, 1105 were correctly classified, while only 127 were

incorrectly classified. On the other hand, only 393 AI projects were correctly classified while

375 were incorrectly classified. In other words, the model classified about ninety percent of

the Successful in the Initiation stage projects correctly, but only classified a little better than

fifty percent of the Abandoned in the Initiation projects correctly. However, before considering

in detail what these results mean, we need to look a little closer to evaluate the importance of

some of our other variables.

Aug 18 2010 review version – do not cite or quote

4

Figure 8.2
Initiation Stage Variable Importance Plot using Sampling Strategy #2

(n=2000, Based on 500 Trees, see Chapter 7, Table 7.5)

We constructed the Variable Importance Plot (VIP) shown in Figure 8.2 using the same

data selection criteria used for the Classification Tree shown Figure 8.1 (i.e., Sampling

Strategy #2). Figure 8.2 shows the Mean Decrease in the Gini Index, which indicates the

relative importance of variables having the most effect on the accuracy of over 500 trees

generated using the Random Forests methodology described in Chapter 7. Variables

decrease in importance going from the top of the plot to the bottom. The fact that the PII and

Tracker Reports are the most important variables corroborates the results of the classification

tree shown in Figure 8.1. We also see in Figure 8.2 that Developers and Project License

Aug 18 2010 review version – do not cite or quote

5

(gpl.compatible and gpl.incompatible) appeared as important splitting variables in the

Random Forest generated by this methodology.

 We will talk more about the Developers variable in following sections of this chapter

and the next, but as it turns out, Project License is highly correlated with PII in the Initiation

Stage. The similarity between these two variables is revealed by the fact that almost all of the

projects with a PII less than 3 (the splitting number for the top node in Figure 8.1) have not

selected a license. Thus, the classification tree process might choose either a PII less than

three or the fact that a project has not chosen a license to make the split, depending on

relatively small changes in the characteristics of a sample from our dataset. A more intuitive

way to understand how these variables are surrogates is to reason that project administrators

who fail to make the important choice of a license are unlikely to choose other descriptive

categories for the project. Consequently, the license variables are surrogates for the PII,

making the PII even more important than it appears to be at first glance. At this juncture we

should emphasize another important point related to the license variables. They appear near

the top of the Figure 8.2 VIP not because one license type (GPL incompatible or GPL

compatible) helps to distinguish successful and abandoned projects in the Initiation Stage, but

rather because selecting a license1 compared to not selecting a license helps to make this

distinction.

 Finally, examining the VIP in Figure 8.2, we should take note that almost all of the

categorical variables except licenses (from “Topic – Communications” through “Programming

Language-Other”) fail to make an important contribution to discriminating between successful

1 Note that it is not always one or the other: GPL compatible or GPL incompatible. Some (1906 to be exact)

projects in our Sourceforge.net dataset have selected both options.

Aug 18 2010 review version – do not cite or quote

6

and abandoned projects in the Initiation Stage. Stated a more positive way, it appears that

both success and abandonment of open source projects are widely distributed across

intended audiences, operating systems, programming languages, project topics and the other

categories that our categorical variables represent. To illustrate this point we provide Table

8.1, which includes all the projects in our database (n=107,747) and shows the number of

projects in each dependent variable class for every categorical variable subcategory. This

table shows that all the subcategories have a substantial number of projects in all the

dependent variable classes.

Figure 8.3

Variable Importance Plot using Sampling Strategy #3
(n=5037, see Chapter 7, Table 7.5)

Aug 18 2010 review version – do not cite or quote

7

 Before discussing our Initiation Stage results further, we want to investigate the effect

that “missing” data not completed by project administrators has on the results shown in

Figures 8.1 and 8.2. In order to do this, we constructed the VIP shown in Figure 8.3 using the

same set of independent variables as was used to generate Figure 8.1 for all successful and

abandoned projects in the Initiation Stage except we only sampled projects that had

”Complete Observations” (n=5037, see Table 7.5 Data Subset #3). Recall that we defined

“Complete Observations,” in the “Handling of Missing Data” section in Chapter 7, to be

projects that have at least one variable selected for each of our categorical variable groups.

Figure 8.3 shows that the two most important variables are Tracker Reports and the PII, with

Developers being the third most important variable. These findings coincide quite well with

our earlier results in Figure 8.2 for the most important splitting variables and give us

confidence that our results are meaningful despite any concerns about missing data.

Discussion / Findings

 Now that we have verified our results and addressed concerns about missing data, we

can discuss our findings for the Initiation Stage. Recall that in Chapter 7 we discussed all our

independent variables and their association with hypotheses presented in earlier theoretical

chapters. This section describes our findings along with their relationship to these

hypotheses, where applicable.

Aug 18 2010 review version – do not cite or quote

8

Initiation Stage Finding #1: The Project Information Index lends support for hypotheses H-P1
(software requirements - “clearly defined vision”), H-P3a (software “utility”), and H-C6a and H-
C6b (leadership) in Table 7.8.

 Our most important finding is that a PII greater than 2 is highly correlated with success

in the Initiation Stage. Recall that the PII is a metric we created that totals the number of

subcategories of the categorical variables that a project's administrator had selected to

describe the project. The highest possible value is 54 categories, and the highest PII score

any one particular project had in our 107,747 dataset was 25.

 So why would a project leader’s simply selecting more descriptive subcategories in SF

be associated with project collaborative success in the Initiation Stage? Our first thought was

that the PII number may rise after a project becomes successful in the Initiation Stage, and

thus may not have anything to do with a project becoming a Success in Initiation Stage (SI)

project. In Chapter 6 we made the point that the SI class is any projects that have made it to

the Growth Stage – that is, it includes all the Abandoned in Growth (AG), Indeterminate in

Growth (II) and Successful in Growth (SG) projects. So our results might indicate that projects

add categories as they pass through the Growth Stage. This would mean that a higher PII

would not reflect a higher rate of success in the Initiation Stage, but rather it would reflect

what happens to the PII after a project becomes successful in the Initiation Stage. Projects

may list more information as they add more functionality over time (because the project uses

more programming languages, runs on more operating systems, has more user interfaces,

etc.), or perhaps it is as simple as a project administrator finally having time to do the

“paperwork” of adding more detailed project descriptions.

 But is this the case? Do projects add categories, and thus raise their PII as they

progress through the Growth Stage, or do projects in the Initiation Stage with higher PII

Aug 18 2010 review version – do not cite or quote

9

values become successful? Fortunately, we were able to shed some light on this question,

and it appears that the latter is supported – projects in the Initiation Stage with high PIIs more

often achieve collaborative success.

 Let us summarize briefly how we came to this conclusion. The key analytic question is

whether the PII values for projects that just produced a first release (new Growth Stage

projects) are substantially higher than projects that have not yet done so. Fortunately, using

our 107,747 case dataset, we were able to investigate this question. Our categorical variables

were part of the data we received from the FLOSSMole (2006) repository which represents

the SF database on August 1, 2006. The PII value for each project reflects this date.

However, we noted in Chapter 6 that the FLOSSMole (2006) dataset did not include release

dates for projects. We had to collect or “spider” SF for that data ourselves, in October 2006.

By having release date data taken from SF later in the year, we were able to query our

database to extract projects that did have a release date close to (plus or minus 15 days) the

July 31st, 2006 date our PII data were collected. These were very new SI projects that had

little time to do further work and change the PII.2 From this, we have two key pieces of

information: PII values for all projects in our dataset, and which projects became SI right

around the time that our PII was measured.

 Table 8.2 shows statistics for the PII for all of the 107,747 projects in each dependent

variable class in our dataset. We also provide a box-plot of this data in Figure 8.4 below. We

performed an Analysis of Variance (ANOVA) on the data shown in Table 8.2 and found that

all the classes differ significantly from one another (P-value less than 0.001) with regard to

2
 We made the assumption that the PII would not change much during a 30 day window of time. We also

compared shorter periods of time (i.e., plus or minus 7 days) and the PII values for time periods before and time
periods after the first release to verify that this assumption seems reasonable.

Aug 18 2010 review version – do not cite or quote

10

PII.3 The center row of this table provides the statistics for “Very New Successful in Initiation

Stage” projects (778 of them). These are projects that are all Successful in Initiation (they

achieved a first release), but fall within the Indeterminate Growth class because they are so

new that they couldn't yet be classified as either Abandoned (AG) or successful (SG) in the

Growth Stage. This row in Table 8.2 shows that the mean PII for these brand new growth

stage projects is 6.811. That is, between 6 and 7 categories were chosen for these brand-

new Growth Stage projects (see Figure 8.4 as well). This can be compared to the first row in

Table 8.2 that shows a smaller PII mean for Abandoned Initiation (AI) projects of 3.796.

Figure 8.4
Box-plot of PII Scores for Dependent Variable Groups

 The other group we should focus on in Table 8.2 and Figure 8.4 is the Indeterminate in

3 Recall that in Chapter 6 we discussed the “population” of open source projects and the degree to which SF
may be “representative” of this population. That discussion is relevant here because the ANOVA we performed
is based on the assumption that our PII means are a random sample taken from a larger “population.” Also note
that our analysis is based on a single time period. Over longer periods of time, changes in factors like the design
of the SF administrative interface (see Chapter 7), macroeconomic changes or the growth of the open source
phenomenon itself warrant further investigation.

Aug 18 2010 review version – do not cite or quote

11

Initiation (II) class. These are projects in the Initiation Stage that do show some kind of

development activity but have not yet produced a first release. These projects may or may not

eventually be successful in Initiation – we simply can't tell at the time the data were collected.

Table 8.2 shows us that the mean PII value for projects in the II class is 4.416, and as we just

learned, the average PII value for “Very New Growth Stage” projects is 6.811. What this

strongly suggests is that projects with high PII values in the Indeterminate in Initiation (II)

class, on average, are the ones that become Successful in Initiation (SI) projects and enter

the Indeterminate in Growth (IG) class. In fact, it appears that the “Very New Growth Stage”

projects that “moved” from the II class into the IG class at the time of their first release had a

mean PII just slightly below the cutoff point of the third quadrant of all II projects (a value of

7.0 in Table 8.2). In other words, projects with high PII values in the Initiation Stage became

Successful in Initiation (SI) projects much more often than projects with lower PII values, at

least for this point in time. The data in Table 8.2 also suggests that projects with high PII

values in the Initiation Stage may often go on to become SG projects in a relatively short

period of time. Since the argument supporting this idea is largely theoretical, we have

included it as an endnote to this chapter.

 This analysis provides strong evidence that Initiation Stage projects that make it to a

first release (that is, the Growth Stage) tend to have higher PII values. But why would that be

case? We can think of at least three possibilities that relate back to the theory and

hypotheses discussed in Chapter 4.

 First, we hypothesized that projects with a “clearly defined vision” would be more

successful compared to ones lacking a clear vision (see Table 4.1, H-P1). The categories

contained in the PII include things like the audiences that the project targets, the operating

Aug 18 2010 review version – do not cite or quote

12

systems that the project's software is designed to run on, the programming languages that the

project uses, the user interface that the project will present and the project's topic or topics. It

seems likely that projects with higher PII values would reflect a clearer plan or vision for the

project compared to projects with a lower PII. This lends some support to H-PI for projects in

the Initiation Stage.

 Second, we hypothesized that projects would be more successful when the software

was “considered useful” by end users (see Table 4.1, H-P3a). It seems logical that a software

project intended for use by multiple audiences, intended to run on multiple operating systems,

and capable of working with multiple user interfaces would have greater utility, by the

classical definition of that word, compared to a project with less of these options. It also

seems clear that such a project would tend to have higher PII scores (more selected

categories). Consequently, the PII may provide a relatively straightforward measure of utility.

It is important to remember, however, that because projects in the Initiation Stage have not

actually produced software, this utility would be “potential” rather than actual. Nevertheless,

since “potential” utility may help to recruit pre-release users or developers, we think that this

PII result supports hypothesis H-P3a.

 Finally, we'd expect that project administrators who were more diligent or committed,

would tend to take more time to answer questions about the project's attributes. For example,

a developer leading a serious programming project will more likely take the time to enter this

information into SF, whereas, for example, a student at a university using SF to store his or

her programming project for a class might not take the time to complete all the relevant

categories. In the latter case, it might simply not be important to the developer to do this. In

addition, having a clear vision or plan for the project could very well be related to setting

Aug 18 2010 review version – do not cite or quote

13

goals, so the PII may be capturing aspects of “project leadership,” lending support to our

hypotheses H-C6a and H-C6b in Table 4.2.

 In sum, we think the reason for the PII's strong influence in distinguishing between

successful and abandoned Initiation Stage projects is because it captures elements of a

“clearly defined vision” (H-P1), software “utility” (H-P3a), and leadership (H-C6a, H-C6b) in

Tables 4.1 and 4.2 in Chapter 4.

Initiation Stage Finding #2: Collaborative success and abandonment are widely distributed
across SF categories.

 The lack of importance of any categorical variables (VIP in Figure 8.2) shows that

successful and abandoned open source projects are widely distributed across all categorical

variables – intended audiences, operating systems, programming languages, project topics,

and user interfaces, and the two main open source license types. This finding is true both for

the Initiation Stage and the Growth Stage (Chapter 9). We wonder if this same result would

have been true had this analysis been done even five years ago. To us, this finding suggests

that open source as a collaborative paradigm may be “maturing,” meaning that it is now

entering a broader spectrum of software “topic areas,” rather than focusing on traditional

“open source” technologies, such as software projects around Gnu Linux, Apache, etc. We

admit this last point is slightly speculative since we have no hard evidence to support it, but

conceptually, it aligns well with the “open source ecosystem” points made back in Chapter 2.

Initiation Stage Finding #3: The collaborative infrastructure Bug Tracker and Forum Post
categories do not help to distinguish between successful and abandoned projects in the
Initiation Stage.

 We included Tracker Reports in this analysis, even though it is the “pre-release” stage,

Aug 18 2010 review version – do not cite or quote

14

because it is conceivable that it could be used to communicate feature requests for the

upcoming first release. Similar thought was given to Forum Posts as a form of project

documentation. This connects back to the “collaborative infrastructure” research question

presented in Chapter 4 (RQ-P1, Table 4.1). Figures 8.1-8.3 show that each of these

variables help to distinguish between successful and abandoned projects in the Initiation

Stage. However, we conducted a deeper analysis (similar to the PII analysis above) that

shows in each of these cases the numbers rise after these projects get into the Growth Stage

and it is these higher numbers for the projects representing Success in Initiation (all Growth

Stage projects) that produce this result.

Initiation Stage Finding #4: Group Size does not help to distinguish between successful and
abandoned projects in the Initiation Stage.

 We included the Developer variable to investigate the three group size theories

(Olson/Brooks, Linus' Law, and “Core Team”) we discussed back in Chapter 4 (RQ-C4, Table

4.2). Both VIP Figures 8.2 and 8.3 show that developer count is an important variable for

distinguishing between successful and abandoned Initiation Stage projects. However, like

earlier findings, the question is whether this is true for the Initiation Stage or is it related to the

fact that our “Success in Initiation data” are Growth Stage projects? We conducted a similar

analysis to what we did for PII, and we discovered that the mean developer count for projects

at the time of their first release (the 778 “Very New” projects in Table 8.2) is 1.56, which is

very close to the mean developer count for all projects in the Initiation Stage (1.61). In

contrast, the mean developer count for all Growth Stage projects is markedly higher (2.3)

developers per project (see Figure 8.5).

Aug 18 2010 review version – do not cite or quote

15

Figure 8.5
Box-plot of Developer Counts for Dependent Variable Groups

 Consequently, while the VIPs in Figure 8.2 and 8.3 show that developer counts help to

distinguish between successful and abandoned projects in the Initiation Stage, our further

examination of the data shows that this finding is because developer counts get higher after a

project becomes Successful in Initiation. It is an artifact of having Growth Stage projects in

our dataset as cases of Success in Initiation. Group Size has important implications for the

Growth Stage (as we will return to in Chapter 9), but our conclusion here is Group Size does

not help to distinguish between success and abandonment when projects are in the Initiation

Stage, and the average developer group size in Sourceforge in this stage is quite small (less

than 2). This finding lends support to the “Core Team” theory discussed in which argued that

small “core members” do the majority of the development work and consequently, the size of

the group shouldn’t matter.

Aug 18 2010 review version – do not cite or quote

16

Initiation Stage Finding #5: The “Computer Professionals” subcategory of Intended Audience
does not help to distinguish between success and abandonment in the Initiation Stage. This
“non-finding” suggests a broadening of von Hippel's “user-driven innovation” in the more
complex open source ecosystem, where it is no longer just programmers developing for their
own (more technical) use, but in addition, programmers developing software for use by other
types of end users.

 In our descriptions of the categorical variables in Chapter 7, we discussed how the

“computer professionals” variable in the Intended Audience category might provide support

for the “User-Driven Innovation” hypothesis (H-C1, Table 3.2) discussed in depth in Chapter

3. Our argument for this hypothesis, building on von Hippel (2005), was that open source

collaboration is driven by developers programming to meet their own, more technical needs.

That is, the successful open source Initiation Stage projects would more ones producing

software that computer professionals themselves need and use (such as enhancements to a

web server module that is used by professional web administrators). Following this logic, we

expected to see the Computer Professionals subcategory to be an important indicator of

success and show up as a splitting variable in our trees or on the VIPs, compared to the other

four aggregated Intended Audience categories (end users, business, government, other; refer

back to Table 7.1). Our data do not support this hypothesis. Only in the VIP shown in Figure

8.3 do any of the Intended Audience subcategories appear higher in the chart, and in this

case it is the End Users category that is the first to appear, followed by Computer

Professionals. However, their Gini coefficients are relatively low, meaning their differentiating

power is small. Software written for computer professionals does not help to distinguish

between successful and abandoned projects in the Initiation Stage, so von Hippel's user-

driven innovation hypothesis is not supported.

 But why not? Our first thought could be that our aggregation from nineteen categories

Aug 18 2010 review version – do not cite or quote

17

to five categories hides important information. But looking back at this aggregation and how

we “clumped” subcategories (see Chapter 7, Intended Audience section), we don't think these

aggregations were inappropriate or that changing them would make much of a difference. In

our opinion, the best explanation for this finding is what we might call the “maturing nature” of

open source: it is not just about computer professionals' needs anymore. The early years of

open source (e.g., 1990's and into the early 2000's) were driven by programmers needing

software for their own use as von Hippel (2005) has argued; however, in more recent years,

such as 2006 when we collected our data, the open source paradigm has expanded, and

programmers were willing to develop software outside of the domain of the Intended

Audience of Computer Professionals. They still may be users of the software (e.g., the “end-

user” category) but no longer are programmers limiting themselves to writing software that is

intended for Computer Professionals' use (like the web server example noted above). They

are writing code for other types of end users. Moreover, we think that this finding may be

capturing the effect of a “broadening” open source ecosystem, emphasized in Chapter 2,

where organizations – businesses, government agencies, non-profits – are now paying

programmers to develop open source solutions to meet organizational needs (following the

non-differentiating arguments made by Perens, 2005), which may not be the needs of

computer professionals.

Initiation Stage Finding #6. Success and abandonment are widely distributed across all areas
of software development, not just in “traditional open source” technologies. The “Helping the
Open Source Cause” hypothesis is not supported.

 As described in Chapter 7, several SF variables are thought to capture elements of the

“helping the open source cause” hypothesis (H-C5, Table 3.2). These include: Operating

Aug 18 2010 review version – do not cite or quote

18

System, User Interface, Database Environment, and Project License. In each of these cases,

none of their corresponding subcategories associated with “helping the cause” stood out in

the trees we generated or in the Random Forest VIPs for the Initiation Stage. For example, if

helping the open source cause was a strong driver for collaborative success, we would

expect to see projects associated with Linux or BSD (Operating System subcategories), Open

Source DB (Database subcategory), Gnome or KDE (User Interface subcategories) or GPL

(Program License subcategory) to be splitting variables or to show up in VIPs. None of these

were important splitting variables, providing another indication (like the earlier user-generated

innovation discussion) that success in open source is influencing all areas of software, and

not just in “traditional” open source technology areas – at least in the Initiation Stage.

Initiation Stage Finding #7: No Project Topics, Operating Systems or Programming
Languages make a major contribution towards distinguishing between successful and
abandoned projects in the Initiation Stage. The “critical infrastructure” (H-P3b, Table 4.1) and
“preferred technologies” (H-P3c, Table 4.1) hypotheses are not supported.

 Our earlier discussion on the Project Topic SF variable in Chapter 7 highlighted the

“systems” subcategory and noted that this captures a component of the concept “critical or

foundational infrastructure.” The earlier hypothesis (H-P3b, Table 4.1) argued that projects

working on foundation infrastructure like operating systems might be more successful than

projects focusing on other topics. Alternatively, while not a stated hypothesis, we might find

that the topic “games/entertainment” might stand out if the community of younger developers

interested in gaming were driving a significant part of the successful open source

collaborations on SF. Project Topic areas essentially tied for last place in terms of their

importance in discriminating success and abandonment (Figures 8.2 and 8.3). Compared to

Aug 18 2010 review version – do not cite or quote

19

the top 4 or 5 variables (including Developers and PII), the Gini coefficients for Project Topic

areas reflect little importance. In short, the “critical infrastructure” hypothesis not supported,

based on our analysis.

 We also were interested in investigating whether any “preferred technologies,” like

software for particular Operating Systems or ones that used particular Programming

Languages, might be a major factor associated with Initiation Stage success or abandonment

(H-P3c, Table 4.1). You may recall that the idea behind this is that programmers might be

more interested in participating on projects related to one or more operating systems, or

which use particular programming languages. The latter could be driven by learning

motivations (see Chapter 3). But our analysis (Figures 8.1-8.3) shows that none of the

subcategories for Operating System or Programming language are major factors that

distinguish between successful and abandoned projects in the Initiation Stage.

Initiation Stage Finding #8: Success is not associated with GPL compatible or GPL
incompatible licensing.

 Finally, using our one institutional variable available from SF, Project License, we were

able to investigate the research question (RQ-I3, Table 5.5) discussed in Chapter 5. Does the

choice between a GPL compatible license and a GPL incompatible one affect the

collaborative success of a project? For the Initiation Stage, our analysis suggests the answer

is no – or at least not in an important way. However, given that these license variables

appeared relatively high in the VIP of Figure 8.2, and even though we think we have

explanations for this (e.g., the close relationship of the license variables and the PII and that

this is capturing the influence of selecting a license at all versus compared to not selecting a

Aug 18 2010 review version – do not cite or quote

20

license), we intend to investigate this question further in our survey work in Part IV.

Conclusions

 This chapter presented our results and findings of classification tree analysis for

Sourceforge.net projects in the Initiation Stage. We will provide reflections on what these

findings suggest for building and sustaining open source commons in the summary section of

Part III of the book, which follows Chapter 9. But before we do this, we will turn to a similar

analysis of Sourceforge.net Growth Stage projects in the next chapter.

Aug 18 2010 review version – do not cite or quote

21

Table 8.1
Number of Projects in Each Dependent Variable Class for Each Categorical Independent

Variable (includes all 107,747 projects in our database)

Project Class

Independent variable AI II IG AG SG Total

Intended audience
ia1- end users

8483 3684 4171 12161 7444 35943

ia2 – computer
professionals

10875 4338 5058 16750 10130 47151

ia3 – business 1443 713 728 1377 976 5237

ia4 – other 3987 1553 1631 4911 3060 15142

ia5 – government/
non-profit

130 254 197 63 98 742

Operating System
os1 – POSIX

7039 1303 1758 10677 6898 27675

os2 – independent 7426 2995 3518 9561 5718 29218

os3 – Linux 5636 1127 1534 8415 5275 21987

os4 – MS Windows 6157 2662 2876 7944 4776 24415

os5 – Mac 941 239 400 1086 1150 3816

os6 – BSD 843 253 313 1170 1002 3581

os7 – unix-like 481 54 131 867 755 2288

os8 - other 1131 382 425 1575 1141 4654

Programming Language
pl1 – Java

5444 2688 2703 6411 3700 20946

pl2 – C 7112 2440 2809 10058 6931 29350

pl3 – PhP 3610 1579 1359 4057 1964 12569

pl4 – Perl 1365 338 474 2379 1396 5952

pl5 – Python 1214 529 639 1558 1085 5025

pl6 – Microsoft 1601 1007 951 1966 789 6314

pl7 – other 2139 938 1035 2980 2085 9177

pl8 - Assembly 500 87 101 465 303 1456

User Interface
ui1 – web-based

5793 2182 1875 6586 3500 19936

ui2 – MS Windows 4278 842 1104 5837 3284 15345

ui3 – X Windows 2493 166 277 3478 2427 8841

ui4 – non-interactive 1122 288 338 1738 1171 4657

ui5 – console 632 989 1460 922 935 4938

ui6 – Java 565 907 961 536 575 3544

ui7 – Gnome 569 110 109 848 550 2186

ui8 – other 2056 1748 1845 2241 1957 9847

ui9 - KDE 480 80 92 635 447 1734

Aug 18 2010 review version – do not cite or quote

22

Table 8.1
Number of Projects in Each Dependent Variable Class for Each Categorical Independent

Variable (includes all 107,747 projects in our database)

Database environment
de1 – open source DB

1117 1966 1397 805 829 6114

de2 – proprietary DB 203 441 318 180 224 1366

de3 - other 780 1218 972 611 601 4182

Project Topic
t1 - communications

2828 1099 953 3750 2066 10696

t2 - database 1285 379 472 1718 1061 4915

t3 – desktop environ. 561 179 245 986 675 2646

t4 - education 810 439 487 1043 627 3406

t5 – formats and protocols 191 283 356 171 214 1215

t6 – games / entertain. 3076 1052 975 3232 1538 9873

t7 - Internet 4360 1525 1679 6176 3367 17107

t8 - multimedia 1784 699 960 3095 2099 8637

t9 – office / business 1330 663 616 1338 858 4805

t10 – other/ nonlisted 552 124 157 693 387 1913

t11 – printing 90 17 48 149 113 417

t12 – religion / philosophy 80 19 28 61 62 250

t13 – scientific /
engineering

1755 790 1019 2432 1889 7885

t14 – security 504 190 278 907 531 2410

t15 – sociology 94 29 39 88 64 314

t16 – software
development

3319 1601 1928 5149 3482 15479

t17 – systems 2925 1017 1408 4808 2975 13133

t18 – terminals 88 27 47 195 125 482

t19 – text editors 305 89 177 519 422 1512

Project License
gpl_compatible

14814 6736 7381 21466 12340 62737

gpl_incompatible 3286 1863 1650 4062 2883 13744

Aug 18 2010 review version – do not cite or quote

23

Table 8.2
Project Information Index (PII) Variable Statistics by Dependent Variable Class

(Codes: AI- Abandoned in Initiation, II – Indeterminate in Initiation,
IG – Indeterminate in Growth, AG – Abandoned in Growth, SG – Successful in Growth)

Class # of
Projects

Minimum 1st
Quadrant

Median Mean 3rd
Quadrant

Maximum

AI (0) 37,320 0 0 2.0 3.796 7.0 24.0

II (1) 13,342 0 0 5 4.416 7.0 23.0

“Very New”
SI projects

778 0 6 7 6.811 8.0 24.0

IG (2) 10,711 0 5 6 6.018 8.0 25.0

AG (3) 30,592 0 5 7 6.305 8.0 24.0

SG (4) 15,782 0 6 8 7.664 9.0 25.0

All Projects 107,747 0 0 6 5.373 8 25.0

Endnote. The mean PII value for the IG stage (6.018) is significantly below the mean PII value for projects at
the time of their first release (6.811), with a P-value < 0.001 as described above. Assuming that projects don't
lower their PII very often (a seemingly reasonable assumption), this means that, on average, projects with higher
PII values in the IG class tend to move rather quickly into the SG Class or the AG Class. (By our definitions, a
project can only remain in the IG class for, at most, two years.) If this were not the case, then the IG Class, over
less than a two year period, would have a mean PII value approximately equal to the mean value for projects
entering that class at the time of their first release (i.e. 6.811), rather than its lower value of 6.018. Although it is
possible that some high PII projects move into the AG class, if they all did, then over time the AG class would
have an average PII value of 6.811. So, it appears that projects with high PII values in the Initiation Stage not
only tend to become SI projects, but also become SG projects more often than projects with lower PII values.
This reasoning is consistent with the observation that SG projects have the highest mean PII value (7.664).
Projects probably also add information about the project as they grow. As mentioned previously, projects might
add information because they increase their functionality (i.e., use more programming languages, run on more
operating systems, have more user interfaces), or the projects’ administrators may have simply not fully
described the project earlier in its lifetime. Because, by our definitions, projects in the AG class must have been
in the Growth Stage for at least one year; to some degree, the process of adding information over time may
explain the fact that the AG class has a higher mean PII than the IG class (6.305 versus 6.018). If this reasoning
is correct, then perhaps most of the projects entering the Growth Stage with a high PII move into the SG class.
Admittedly, this argument is theoretical, and other explanations are possible, although they seem less likely.
Fortunately, the longitudinal data necessary to verify or refute this argument is available from FLOSSmole and
the Sourceforge.net research repository maintained at the University of Notre Dame
(http://www.nd.edu/~oss/Data/data.html).

