Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria

TitleHost population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria
Publication TypeJournal Article
Year of Publication2005
AuthorsWoodworth, B. L., Atkinson C. T., LaPointe D. A., Hart P. J., Spiegel C. S., Tweed E. J., Henneman C., LeBrun Jaymi J., Denette T., DeMots R., Kozar K. L., Triglia D., Lease D., Gregor A., Smith T., and Duffy D. C.
JournalProceedings of the National Academy of Sciences
Pagination1531 - 1536
Date Published02/2005
KeywordsAnimals, Avian / transmission, Bird Diseases / transmission, climate, Culicidae, Geography, Hawaii, Insect Vectors, Malaria

The past quarter century has seen an unprecedented increase in the number of new and emerging infectious diseases throughout the world, with serious implications for human and wildlife populations. We examined host persistence in the face of introduced vector-borne diseases in Hawaii, where introduced avian malaria and introduced vectors have had a negative impact on most populations of Hawaiian forest birds for nearly a century. We studied birds, parasites, and vectors in nine study areas from 0 to 1,800 m on Mauna Loa Volcano, Hawaii from January to October, 2002. Contrary to predictions of prior work, we found that Hawaii amakihi (Hemignathus virens), a native species susceptible to malaria, comprised from 24.5% to 51.9% of the avian community at three low-elevation forests (55-270 m). Amakihi were more abundant at low elevations than at disease-free high elevations, and were resident and breeding there. Infection rates were 24-40% by microscopy and 55-83% by serology, with most infected individuals experiencing low-intensity, chronic infections. Mosquito trapping and diagnostics provided strong evidence for year-round local transmission. Moreover, we present evidence that Hawaii amakihi have increased in low elevation habitats on southeastern Hawaii Island over the past decade. The recent emergent phenomenon of recovering amakihi populations at low elevations, despite extremely high prevalence of avian malaria, suggests that ecological or evolutionary processes acting on hosts or parasites have allowed this species to recolonize low-elevation habitats. A better understanding of the mechanisms allowing coexistence of hosts and parasites may ultimately lead to tools for mitigating disease impacts on wildlife and human populations.