Forest landscape models: Definitions, characterization, and classification

TitleForest landscape models: Definitions, characterization, and classification
Publication TypeJournal Article
Year of Publication2008
AuthorsHe, Hong
JournalForest Ecology and Management
Pagination484 - 498
Date Published02/2008
KeywordsDefinitions, Forest landscape models, Model characterization, Model classification, Spatially explicit, Spatially interactive

Previous model classification efforts have led to a broad group of models from site-scale (non-spatial) gap models to continental-scale biogeographical models due to a lack of definition of landscape models. Such classifications become inefficient to compare approaches and techniques that are specifically associated with forest landscape modeling. This paper provides definitions of key terminologies commonly used in forest landscape modeling to classify forest landscape models. It presents a set of qualitative criteria for model classification. These criteria represent model definitions and key model implementation decisions, including the temporal resolution, number of spatial processes simulated, and approaches to simulate site-level succession. Four approaches of simulating site level succession are summarized: (1) no site-level succession (spatial processes as surrogates), (2) successional pathway, (3) vital attribute, and (4) model coupling. Computational load for the first three approaches is calculated using the Big O Notation, a standard method. Classification criteria are organized in a hierarchical order that creates a dichotomous tree with each end node representing a group of models with similar traits. The classified models fall into various groups ranging from theoretical and empirical to strategic and tactical. The paper summarizes the applications of forest landscape models into three categories: (1) spatiotemporal patterns of model objects, (2) sensitivities of model object to input parameters, and (3) scenario analyses. Finally, the paper discusses two dilemmas related to the use of forest landscape models: result validation and circular reasoning.