
Energy Characterization of Hardware-Based Data Prefetching

Yao Guo1, Saurabh Chheda2, Israel Koren1, C. Mani Krishna1, and Csaba Andras Moritz1

1Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003
2BlueRISC Inc., Hadley, MA 01035

Abstract

This paper evaluates several hardware-based data prefetching
techniques from an energy perspective, and explores their en-
ergy/performance tradeoffs. We present detailed simulation results
and make performance and energy comparisons between different
configurations. Power characterization is provided based on HSpice
circuit-level simulation of state-of-the-art low-power cache designs
implemented in deep-submicron process technology. This is com-
bined with architecture-level simulation of switching activities in the
memory system. The results show that while aggressive prefetching
techniques often help to improve performance, they increase energy
consumption in most of the cases. In designs implemented in deep-
submicron 100-nm BPTM process technology, cache leakage becomes
one of the dominant factors of the energy consumption. We have,
however, found that if leakage is optimized with recently-proposed
circuit-level techniques, most of the energy degradation is due to
prefetch-hardware related costs and unnecessary L1 data cache
lookups related to prefetches that hit in the L1 cache. This overhead
on the memory system can be as much as 20%.

1. Introduction

Prefetching has been proposed as a successful technique to hide
memory latencies. Although considerable research has been focused
on improving the performance of prefetching mechanisms, the im-
pact of such prefetching techniques on processor energy efficiency
remains unclear. In this paper, we present energy characterization
of several hardware-based data prefetching techniques. Our purpose
is to analyze the current and potential energy-related issues of data
prefetching mechanisms and to motivate new development of energy-
aware data prefetching techniques.

Both hardware [15], [3], [13], [14], [6] and software [11], [8],
[9] techniques have been proposed for prefetching in recent years.
Software prefetching is implemented by inserting explicit prefetch
instructions into the executable code. Although there are no hardware
requirements for software prefetching (prefetching instructions are
supported by most contemporary microprocessors), the compiler pro-
cess of inserting and scheduling prefetches is complicated. Hardware-
based approaches are simpler since they do not require modification
to executables. Although hardware prefetching requires extra prefetch
hardware in a processor, such additional hardware requirements are
typically small.

This paper evaluates several state-of-the-art hardware-based data
prefetching techniques from an energy perspective, and explores their
energy/performance tradeoffs. The prefetching techniques studied
include:

• Two sequential prefetching (One Block Lookahead, OBL) ap-
proaches - a simplesequential prefetching(prefetch-on-miss)
and tagged sequential prefetching;

• Stride prefetching, focusing on array-like structures, catches
constant strides in memory accesses and prefetching using the
stride information;

• Dependence-based prefetching, which is designed to prefetch
on pointer-intensive programs containing linked data structures
where no constant strides can be found.

• A new combined stride and dependence-based approach.

In this paper we consider 100-nm technologies: this is representa-
tive of such next generation process technologies. We present detailed
simulation results on each prefetching technique and show perfor-
mance and energy comparisons. We modify the SimpleScalar [4]
simulation tool to implement the different prefetching techniques and
collect statistics on performance as well as switching activity in mem-
ory systems. To estimate power consumption in the memory systems,
we use state-of-the-art low-power cache circuits and simulate them
using HSpice.

As expected, the results show that while aggressive prefetching
techniques often help to improve performance, in most of the applica-
tions, they increase energy consumption by as much as 20%. In many
systems [7], [10], this constitutes more than 10% increase in chip-
wide energy consumption. In designs implemented in deep-submicron
100-nm BPTM process technology, cache leakage dominates the
energy consumption. We have, however, found that if cache leakage is
optimized with recently-proposed circuit-level techniques, most of the
still remaining energy degradation is due to prefetch hardware related
cost and unnecessary L1 data cache lookups related to prefetches
that hit in the L1 cache. When the energy cost of off-chip accesses
is increased to more pessimistic levels (e.g., due to very large load
capacitances driven during off-chip accesses), the other energy effects
become less visible.

The rest of this paper is structured as follows. Section 2 presents a
brief introduction of the prefetching techniques we study in this paper.
The power estimation of memory system aspects and experimental
framework is presented in Section 3. Section 4 gives a detailed
analysis of the experimental results. We conclude with Section 5.

2. Hardware-based Data Prefetching

2.1. Sequential Prefetching

Sequential prefetchingschemes are based on theOne Block Looka-
head(OBL) approach, which initiates a prefetch for blockb+1 when
block b is accessed. OBL implementations differ based on what type
of access to blockb initiates the prefetch ofb+1. We will evaluate
two of the sequential approaches discussed by Smith [16] -prefetch-
on-miss sequentialand tagged prefetching.

The prefetch-on-miss sequential algorithm simply initiates a pre-
fetch for block b+1 whenever an access for blockb results in a
cache miss. Ifb+1 is already cached, no memory access is initiated.
The tagged prefetching algorithm associates a bit with every cache
line. This bit is used to detect when a line is demand-fetched or a
prefetched block is referenced for the first time. In both cases, the
next sequential block is prefetched.

OBL prefetching schemes are not as efficient as more recent
schemes but they require relatively simple hardware. An OBL scheme

was implemented in the HP PA7200 [5] which uses a modified ver-
sion of tagged prefetching scheme and shows significant performance
improvement for some benchmarks.

2.2. Stride Prefetching

Stride prefetching[3] monitors memory access patterns in the pro-
cessor to detect constant-stride array references originating from loop
structures. This is normally accomplished by comparing successive
addresses used by memory instructions.

Since stride prefetching requires the previous address used by
a memory instruction to be stored along with the last detected
stride, a hardware table (called theReference Prediction Table, RPT)
is added to hold the information for only the most recently used
load instructions. Each RPT entry contains the address of the load
instruction, the address of this instruction as accessed previously, a
stride value for those entries that have established a stride, and a state
field used to control the actual prefetching.

Stride prefetching is more selective than sequential prefetching
since prefetch commands are issued only when a matching stride is
detected. It is also more effective when array structures are accessed
through loops. However, stride prefetching uses a hardware table
which normally contains 64 entries; each entry contains around 64
bits. This hardware table is accessed whenever a load instruction is
detected.

2.3. Pointer Prefetching

Stride prefetching has been shown to be effective for array-
intensive scientific programs. However, for general-purpose programs
which are pointer-intensive, or contain a large number of dynamic
data structures, no constant strides can be easily found that can be
used for effective prefetching.

One scheme for hardware-based prefetching on pointer structures,
calleddependence-based prefetching, is proposed by Roth et al. [13].
Like stride prefetching, this scheme uses hardware tables to record
the most recently executed load instruction. The difference is that this
table is used to detect dependencies between load instructions rather
than establishing reference patterns for single instructions.

Dependence-based prefetching requires the help of two hardware
tables. The Correlation Table (CT) is the component responsible for
storing dependence information. Each correlation represents a depen-
dence between a load instruction that produces an address (producer)
and a subsequent load that uses that address (consumer). The Potential
Producer Window (PPW) records the most recent loaded values and
the corresponding instructions. When a load commits, its base address
value is checked against the entries in the PPW, with a correlation
created on a match. This correlation is added to the CT.

PPW and CT typically consist of 64-128 entries containing ad-
dresses and program counters; each entry may contain 64 or more
bits. The hardware cost is around twice that for stride prefetching.
This scheme improves performance on many of the Olden [12]
pointer-intensive benchmarks.

2.4. Combined Stride and Pointer Prefetching

One contribution of this paper is a combined stride and pointer
prefetching techniques. Our objective is to evaluate a technique that
is beneficial for applications containing both array and pointer based
accesses.

We will show that the combined technique performs consistently
better than the individual techniques on two benchmark suites with
different characteristics. However, the hardware cost of this approach
is higher since we need the hardware tables from both stride and
dependence-based prefetching.

Table 1: Baseline parameters

Processor speed 1GHz
Issue 4-way, out-of-order
L1 D-cache 32KB, CAM-tag, 32-way, 32bytes cache

line
L1 I-cache 32KB, 2-way, 32bytes cache line
L1 cache latency 1 cycle
L2 cache unified, 256KB, 4-way, 64bytes cache line
L2 cache latency 12 cycle
Memory latency 100 cycles latency + 10 cycles/word

Table 2: Prefetching hardware parameters

Prefetching Scheme Hardware required

Sequential none
Tagged 1 bit per cache line
Stride A 64-entry RPT
Dependence A 64-entry PPW and a 64-entry CT
Combined All three tables above

3. Experimental Assumptions

3.1. Experimental Framework

We implement the hardware-based data prefetching techniques by
modifying the SimpleScalar [4] simulator. The parameters we used
for simulation are listed in Table 1.

The hardware requirements for the prefetching schemes are shown
in Table 2. For the three schemes that require hardware-based history
tables, each entry of the hardware tables contains two 32 bits address
value and some extra bits. For simplicity, we assume each entry has
roughly the same size of 64 bits.

We randomly select a total of ten benchmark applications, five
from SPEC2000 and five from Olden. The SPEC2000 benchmarks [1]
use mostly array-based data structures, while the Olden benchmark
suite [12] contains pointer-intensive programs that make substantial
use of linked data structures. For SPEC2000 benchmarks, we fast
forward the first one billion instructions and then simulate the next
100 million instructions. The Olden benchmarks are simulated to
completion since they are relatively short.

3.2. Energy Evaluation

The memory system, including caches, consumes a significant
fraction of total processor power. For example, the caches and
translation look-aside buffers (TLB) together consume 23% of the
total power in the Alpha 21264 [7], and the caches alone use 42% of
the power in the StrongARM 110 [10]. In this paper, we will focus on
the memory system power consumption. The L1 and L2 caches, off-
chip memory accesses and prefetching hardware tables could amount
to about half of the total processor energy consumption.

Prefetching schemes affect the energy efficiency of a processor in
a number of ways. For example, unnecessary cache lookups and bus
accesses due to redundant prefetching can severely increase energy
consumption in the memory system. The most important energy
consumption issues introduced by hardware prefetching include:

1) Energy cost of prefetch hardware. Most of the hardware tech-
niques require extra hardware such as address history tables to
record the recent memory access patterns that are used to make
prefetching decisions. The hardware tables, although typically
much smaller compared to caches, are significant sources of

energy consumption since they are normally accessed whenever
a memory access (normally load) occurs.

2) Extra tag lookups for the L1 Cache. Whenever a prefetch
command is initiated, the first thing the prefetch engine does is
to check whether the data to be prefetched is in the L1 Cache.
Although most of the time the prefetch attempts can be resolved
in the L1 Cache, tag lookups still cost significant power.

3) Extra memory accesses to L2 Caches. This is where most of the
actual prefetching happens, i.e., bring the data to the L1-Cache
from L2 before it is accessed.

4) Extra off-chip memory accesses. Although most prefetch com-
mands resolve in the L2 Caches, even the most conserva-
tive prefetching schemes issue unnecessary off-chip memory
prefetches, which result in a slight increase in the traffic to
off-chip main memory. As we will show later, the increase is
normally less than 1%.

To accurately estimate power and energy consumption in L1 and
L2 caches, we perform circuit-level simulations using HSpice. We
base our design on a recently proposed low-power circuit [17] that
we implemented in 100-nm BPTM (Berkeley Predictive Technology
Model) technology. Our L1 cache includes the following low-power
features: low-swing bitlines, local word-line, CAM-based tags, sepa-
rate search lines, and a banked architecture. The L2 cache we evaluate
is based on a banked RAM-tag design.

As we expect that implementations in 100-nm technology would
have significant leakage, we apply a recently proposed circuit-level
leakage reduction technique called asymmetric SRAM cells [2]. This
is necessary because otherwise our conclusions would be skewed
due to very high leakage power. Thespeed enhanced cellin [2] has
been shown to reduce L1 data cache leakage by 3.8X for SPEC2000
benchmarks with no impact on performance. For L2 caches, we use
the leakage enhanced cellwhich increases the read time for 5%, but
it can reduce leakage power by at least 6X and by about 40X in the
preferred state. In our evaluation, we assume speed-enhanced cells
for L1 and leakage enhanced cells for L2 data caches, by applying
the different asymmetric cell techniques respectively.

The power consumption for our L1 and L2 caches are shown in
Table 3.

Table 3: Cache configuration and power consumption
Parameter L1 L2

size 32KB 256KB
tag array CAM-based RAM-based
associativity 32-way 4-way
bank size 2KB 4KB
of banks 16 64
cache line 32B 64B

Power (mW)

P tag 6.5 6.27
P read 9.5 100.52
P write 10.3 118.62
P leakage 3.1 23.0
P reducedleakage 0.82 1.53

In a CAM-based cache (such as the L1 assumed in this paper) a
CAM access and a data-array access are performed for each cache
access. In a Ram-tag cache (such as the L2 assumed in this paper)
multiple tag accesses and data-array accesses need to be completed,
depending on associativity, for every access.

(a)

(b)

0

0.05

0.1

0.15

0.2

0.25

M
is

sr
at

e
fo

r
L

1
D

at
a

C
ac

he

no-prefetch sequential tagged
stride dependence stride+dep

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Sp
ee

du
p

no-prefetch sequential tagged
stride dependence stride+dep

mcf parser art bzip2 galgel bh em3d health mst perim

mcf parser art bzip2 galgel bh em3d health mst perim

Figure 1: Performance speedup for different prefetching schemes: (a)
DL1 miss rate reduction; (b) IPC speedup.

If an L1 miss occurs, energy is consumed not only in L1 tag-
lookups, but also when writing the requested data back to L1. L2
accesses are similar, except that an L2 miss goes to off-chip main
memory. Such an off-chip access consumes a significant amount
of processor power. Rather than picking a single design-point, we
choose a range of energy costs ranging from optimistic to pessimistic.
We express the L2 miss energy as a function of L1 hit energy. We
assume that an L2 cache miss consumes 32X to 512X single-word
read energy of our L1 cache. A similar assumption has been made
in [17]. The actual power consumed depends on how many bits are
in transition and on the actual implementation/packaging choices.

Each prefetching history table is implemented as a 64×64 fully-
associated CAM-array. The power consumption for each lookup or
update to the table is roughly 7.3mW based on HSpice simulation.
The leakage energy of these hardware tables will not be accounted
because they are very small (512B) compared to L1 and L2 caches.

4. Results and Analysis
4.1. Performance Speedup

Performance speedup is the original, and still the primary goal,
of prefetching. Figure 1 shows the performance results of different
prefetching schemes. The first five benchmarks are array-intensive
SPEC2000 benchmarks, and the last five are pointer-intensive Olden
benchmarks. Figure 1(a) shows the reduction of DL1 miss-rate, and
Figure 1(b) shows actual speedup based on simulated execution time.

As expected, the dependence-based approach does not work well
on the five SPEC2000 benchmarks since pointers and linked data
structures are not used frequently. But it still gets marginal speedup
on three benchmarks (parser is the best with almost 5%).

Tagged prefetching (10%) does slightly better on SPEC2000
benchmarks than the simplest sequential approach, which achieves
an average speedup of 5%. Stride prefetching yields up to 124%
speedup (forart), averaging just over 25%. Combined prefetching is
the best, but gives on the average only about 1.5% speedup compared
to the stride approach. The comparison between miss rate reduction
in Figure 1(a) and speedup in Figure 1(b) matches our intuition that
fewer cache misses means greater speedup.

As for the five Olden pointer-intensive benchmarks in Figure 1, the
dependence-based approach eliminates about half of all the L1 cache

(a)

(b)

(c)

0.8

1

1.2

1.4

1.6

1.8

2
N

o
rm

al
iz

ed
 D

L
1

C
ac

he
 A

cc
e

ss
e

s` no-prefetch sequential tagged stride dependence stride+dep

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
or

m
al

iz
ed

 D
L2

 C
ac

he
 A

cc
es

se
s

no-prefetch sequential tagged stride dependence stride+dep

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 M
ai

n
M

em
or

y
A

cc
es

se
s

no-prefetch sequential tagged stride dependence stride+dep

mcf parser art bzip2 galgel bh em3d health mst perim

mcf parser art bzip2 galgel bh em3d health mst perim

mcf parser art bzip2 galgel bh em3d health mst perim

Figure 2: Memory traffic increase for different prefetching schemes. (a)
Number of accesses to L1 data cache, including extra cache-tag lookups
to L1; (b) Number of accesses to L2 data cache; (c) Number of accesses
to main memory.

misses and achieves an average speedup of 27%. Stride prefetching
(14%) does surprisingly well on this set of benchmarks and implies
that even pointer-intensive programs contain significant constant-
stride memory access sequences. The combined approach achieves an
average of 40% performance speedup on the five Olden benchmarks.

In summary, for array-intensive programs, stride prefetching does
reasonably well and dependence-based pointer prefetching is not very
effective. However, for pointer-intensive programs, both stride and
dependence-based approaches do sufficiently well. The combined
approach achieves the best performance speedup due to prefetching.
In general, the combined technique is useful for general purpose
programs which contain both array and pointer structures.

4.2. Memory Traffic Increase

Memory traffic is increased because not all the data we prefetch
from the next level are useful (i.e., not all they are actually used
by a later access before they are replaced from the cache). In
most cases, some useless data is prefetched into the higher level
of the memory hierarchy; these are a major source of power/energy
consumption added by the prefetching schemes. Apart from memory
traffic increases, power is also consumed when we attempt to prefetch
the data that already exists in the higher level cache. In this case, the
attempt to locate the data (e.g., cache-tag lookups) consumes power.

Figure 2 shows the number of accesses going to different levels in
the memory hierarchy. The numbers are normalized to the baseline
with no prefetching. On average, the number of accesses to L1 D-
cache increases almost 40% with the most aggressive prefetching
scheme. However, the accesses to L2 only increase by 8% for the
same scheme, showing that most of the L1 cache accesses are only
cache-tag lookups trying to prefetch data already present in L1.

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 a
cc

es
se

s
to

 L
1

D
-c

ac
he

Pref-hit

Pref-miss

Regular

N
oP

re
fe

tc
h

Se
qu

en
ti

al
T

ag
ge

d
St

ri
de

D
ep

en
de

nc
e

St
ri

de
+D

ep

mcf parser art bzip2 galgel bh em3d health mst perim

Figure 3: Breakdown of L1 Accesses, all numbers normalized to L1 cache
accesses of baseline with no prefetching.

Sequential prefetching techniques (both prefetch-on-miss and
tagged schemes) show completely different behavior as they increase
the L1 access for only about 7% while resulting in a more than
30% average increase on L2-> L1 traffic. The explanation for this
is that sequential prefetching always tries to prefetch the next cache
line which has a much greater chance to miss in L1. Main memory
accesses are largely unaffected in the last three techniques, and only
increase by 5-7% for sequential prefetching.

As L1 accesses increase significantly for the three most effective
techniques, we break down the number of L1 accesses into three
parts: regular L1 accesses, L1 prefetch misses and L1 prefetch hits,
shown in Figure 3. The L1 prefetch misses are those prefetching
requests that go to L2 and actually bring cache lines from L2 to L1.
While the L1 prefetch hits stand for those prefetching requests that
hit in L1 and no real prefetching occurs.

From Figure 3, we can see that L1 prefetching hits account
for most of the increases in L1 accesses. On average, 70-80% of
all the increases come from extra L1 prefetching hits, which may
result in significant energy overhead, while being almost useless for
performance speedup. The extra L1 accesses will obviously translate
into unnecessary energy consumption.

4.3. Energy Consumption

We use the power numbers shown in Section 3 to calculate the
energy consumption.

4.3.1. Cache energy consumption

Figure 4 shows the dynamic energy consumption for L1 and L2
caches and prefetching tables. For most of the benchmarks, the L1
dynamic energy (excluding prefetching overhead) is not affected
significantly. The L2 dynamic energy is increased in proportion to the
L2 memory traffic increase shown in Figure 2(b). Prefetching related
energy overhead on L1 cache is quite small for sequential prefetching,
but more significant for the other three prefetching approaches. This
part of the energy overhead is proportional to the prefetch-related L1
access increase shown in Figure 3.

Energy consumption for the hardware tables are very significant
for all the three prefetching techniques using hardware tables. On
average, the hardware tables consume almost the same amount of
energy as regular L1 caches accesses for the combined prefetching.
Typically this portion of energy accounts for 60-70% of all the

0

0.5

1

1.5

2

2.5
D

yn
am

ic
 E

ne
rg

y
C

on
su

m
pt

io
n

(m
J)

Pref-Tab

L1-Pref

L2-Dyn

L1-Dyn
N

oP
re

fe
tc

h
Se

qu
en

ti
al

T
ag

ge
d

St
ri

de
D

ep
en

de
nc

e
St

ri
de

+D
ep

mcf parser art bzip2 galgel bh em3d health mst perim

Figure 4: Total cache energy consumption without considering leakage
energy.

0

2

4

6

8

10

12

14

16

18

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

 w
/ L

ea
ka

g
e

(u
n

o
p

ti
m

iz
ed

)
(m

J)

Pref-Tab

L1-Pref

L2-Leak

L2-Dyn

L1-Leak

L1-Dyn

N
oP

re
fe

tc
h

Se
qu

en
ti

al
T

ag
ge

d
St

ri
de

D
ep

en
de

nc
e

St
ri

de
+D

ep

mcf parser art bzip2 galgel bh em3d health mst perim

Figure 5: Total cache energy consumption with unoptimized leakage
energy accounted.

dynamic energy overhead that result from combined prefetching.
The reason is that prefetch tables are frequently looked up and are
also highly associative. Their energy consumption is similar to a tag
lookup in a highly optimized banked low power cache.

For the most aggressive combined prefetching approach, the
prefetching energy overhead almost doubles the total dynamic energy
(baseline with no prefetching) for some applications (such asmcf and
em3d), and is 76% on the average. For the other prefetching tech-
niques, there is a 25% increase for sequential prefetching, and about
38% for both stride and dependence schemes. This shows that while
complicated prefetching algorithms can achieve greater speedups,
they can significantly increase the overall energy consumption.

Figure 5 shows the total cache energy consumption with leakage
energy also accounted. Leakage energy is proportional to program
runtime and thus decreases linearly with speedup: higher speedup
will reduce the leakage energy consumption.

In this figure, the total energy consumption for caches is dominated
by L2 leakage because of the large size (256KB) of the L2 cache.
As we can see, for most of the applications, the relative prefetching

0

0.5

1

1.5

2

2.5

3

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

 w
it

h
 R

ed
u

ce
d

 L
ea

ka
g

e
(m

J) Pref-Tab

L1-Pref

L2-Leak

L2-Dyn

L1-Leak

L1-Dyn

N
oP

re
fe

tc
h

Se
qu

en
ti

al
T

ag
ge

d
St

ri
de

D
ep

en
de

nc
e

St
ri

de
+D

ep

mcf parser art bzip2 galgel bh em3d health mst perim

Figure 6: Total cache energy consumption with leakage reduction tech-
niques applied.

overhead shown in Figure 4 has been significantly reduced after the
leakage energy is taken into account.

With no leakage optimization, sequential prefetching saves on
average about 10% of the total energy, stride prefetching about 17%
and the combined approach results in almost 24% energy savings.
The results show that prefetching schemes which have a better
performance speedup also save energy when leakage energy increases
to a certain level in deep sub-micron technologies.

However, leakage energy could be reduced significantly by tech-
niques such as asymmetric SRAM cells [2]. Figure 6 shows the total
cache energy after applying the above leakage reduction techniques.
The dynamic hit energy dominates some of the benchmarks with
higher IPC; however, the leakage energy still dominates in some
programs, such asart, which have a higher L1 miss rate and thus a
longer running time. Although both L1 and L2 cache access energy
are significantly increased due to prefetching, the static (leakage)
energy reduction due to performance speedup can compensate for at
least some portion of the increase in dynamic energy consumption.

The results in Figure 6 show that on average, the prefetching
schemes still cause relatively significant energy consumption over-
head when leakage consumption is reduced to a reasonable level.
The average increase of the combined approach is more than 26%,
and about 11% increase for stride prefetching.

4.3.2. Energy cost for off-chip accesses

To estimate the energy consumption within the processor for
driving off-chip memory accesses, we use similar assumptions as
in [17]. We assume that an L2 cache miss consumes 32-512X single-
word read energy of the L1 D-cache. Our results, including energy
consumption for both caches and off-chip memory access related
power, are shown in Figure 7.

Figure 7(a) shows the situation where L2 miss energy cost is 32X
of L1 hit energy. The prefetching energy overhead is quite significant
for many applications, averaging 7% for sequential prefetching, 8%
for stride prefetching and more than 20% for the combined approach.

When the off-chip memory costs goes up to 128X, as shown in
Figure 7(b) the prefetching overhead stays at 7% for sequential tech-
niques, but drops to almost half for the last three schemes, averaging
about 11% for combined prefetching. If the off-chip memory costs

0

1

2

3

4

5
E

n
er

g
y

(m
J)

Memory
Pref-Tab
L1-Pref
L2-Leak
L2-Dyn
L1-Leak
L1-Dyn

0

10

20

30

40

E
ne

rg
y

(m
J)

memory
cache

0

5

10

15

E
ne

rg
y

(m
J)

memory
cache

(a) Total memory systems energy when L2 miss energy expressed as 32X L1 hit energy

(b) Total memory systems energy when L2 miss energy expressed as 128X L1 hit energy

(c) Total memory systems energy when L2 miss energy expressed as 512X L1 hit energy

mcf parser art bzip2 galgel bh em3d health mst perim

mcf parser art bzip2 galgel bh em3d health mst perim

mcf parser art bzip2 galgel bh em3d health mst perim

N
oP

re
fe

tc
h

Se
qu

en
ti

al
T

ag
ge

d
St

ri
de

D
ep

en
de

nc
e

St
ri

de
+D

ep

N
oP

re
fe

tc
h

Se
qu

en
ti

al
T

ag
ge

d
St

ri
de

D
ep

en
de

nc
e

St
ri

de
+D

ep

N
oP

re
fe

tc
h

Se
qu

en
ti

al
T

ag
ge

d
St

ri
de

D
ep

en
de

nc
e

St
ri

de
+D

ep

Figure 7: Total energy consumption for memory systems with varying L2
miss energy cost.

were to increase to a pessimistic 512X as shown in Figure 7(c), the
energy overhead of prefetching drops to less than 5%.

4.3.3. Energy-delay product

Finally, we show in Figure 8 the energy-delay and energy-delay2

product normalized to the baseline (no prefetching) using the assump-
tion that L2 miss energy is 32X L1 hit energy.

In most cases, we note that both energy-delay and energy-delay2

products improve with effective prefetching techniques that achieve
a large enough performance speedup. The energy-delay product
improves by more than 20% for the combined prefetching, while the
energy-delay2 improves by almost 35%. This is important since by
choosing a design point with lower voltage, this could be converted
into energy efficiency. Nevertheless, we believe that more energy-
focused prefetching algorithms and architectures should be developed
to achieve energy efficiency even at unchanged voltage levels.

According to this figure, extra energy cost by complicated prefetch-
ing techniques are worthwhile for some applications such as the
combined prefetching approach onmcf andem3d.

5. Conclusion

This paper studies the energy consumption issues related to data
prefetching. In deep-submicron process technologies, memory system
energy is dominated by the leakage component unless effective
leakage reduction techniques are used. As feature sizes continue to
decrease, leakage power will constitute an increasing fraction of the
total energy consumption, favoring aggressive prefetching techniques.
However, with successful leakage control, the problem shifts back
to tuning the level of prefetch aggressiveness; otherwise the energy
cost of prefetching will be dominated by the overhead from the
prefetching hardware energy consumption and from extra L1 lookups
when prefetching requests resolve at L1 Cache.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
n

er
g

y
D

el
ay

 P
ro

d
u

ct

no-prefetch sequential tagged
stride dependence stride+dep

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
n

er
g

y
D

el
ay

2
P

ro
d

u
ct

no-prefetch sequential tagged
stride dependence stride+dep

(a)

(b)

mcf parser art bzip2 galgel bh em3d health mst perim

mcf parser art bzip2 galgel bh em3d health mst perim

Figure 8: Energy-delay product for different prefetching techniques. (1)
Energy-delay product; (2) Energy-delay2 product. In both figures, we
assume that the leakage reduction techniques are applied and the off-
chip memory energy cost is 32× L1 hit energy.

Clearly, for low-power processors, choosing the correct prefetching
technique with good speedup and less energy overhead will be
very important. New power-aware prefetching techniques are needed
to reduce the energy overhead without decreasing the performance
benefits of data prefetching.

References
[1] SPEC2000 benchmarks, http://www.spec.org.
[2] N. Azizi, A. Moshovos, and F. N. Najm. Low-leakage asymmetric-cell

sram. InISLPED’02, pages 48–51, 2002.
[3] J. L. Baer and T. F. Chen. An effictive on-chip preloading scheme to

reduce data access penalty. InSupercomputing 1991, pages 179–186.
[4] D. Burger and T. Austin. The simplescalar tool set, version 2.0. Technical

Report CS-TR-1997-1342, Univ. of Wisc., Madison, June 1997.
[5] K. K. Chan, C. C. Hay, J. R. Keller, G. P. Kurpanek, F. X. Schumacher,

and J. Zheng. Design of the HP PA 7200 CPU.Hewlett-Packard Journal,
47(1):25–33, Feb. 1996.

[6] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless content-directed
data prefetching mechanism. InASPLOS-X, pages 279–290, 2002.

[7] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power considerations in
the design of the alpha 21264 microprocessor. InDesign Automation
Conference(DAC-98), pages 726–731, June 1998.

[8] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roediger. Spaid:
software prefetching in pointer- and call-intensive environments. In
Micro-28, pages 231–236, 1995.

[9] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive
data structures. InASPLOS-VII, pages 222–233, 1996.

[10] J. Montanaro and et. al. A 160-MHz, 32-b, 0.5-W CMOS RISC
microprocessor.Digital Technical Journal, 9(1), 1997.

[11] T. Mowry. Tolerating Latency Through Software Controlled Data
Prefetching. PhD thesis, Dept. of CS, Stanford Univ., Mar. 1994.

[12] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren. Supporting
dynamic data structures on distributed-memory machines.ACM Trans.
on Programming Languages and Systems, 17(2):233–263, Mar. 1995.

[13] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching
for linked data structures. InASPLOS-8, pages 115–126, Nov. 1998.

[14] A. Roth and G. S. Sohi. Effective jump-pointer prefetching for linked
data structures. InISCA-26, pages 111–121, 1999.

[15] A. J. Smith. Sequential program prefetching in memory bierarchies.
IEEE Computer, 11(12):7–21, Dec. 1978.

[16] A. J. Smith. Cache memories.ACM Computing Surveys (CSUR),
14(3):473–530, 1982.

[17] M. Zhang and K. Asanovic. Highly-associative caches for low-power
processors. InKool Chips Workshop, Micro-33, Dec. 2000.

