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ABSTRACT
There has been intensive research on data prefetching focus-
ing on performance improvement, however, the energy as-
pect of prefetching is relatively unknown. Our experiments
show that although software prefetching tends to be more
energy efficient, hardware prefetching outperforms software
prefetching on most of the applications in terms of perfor-
mance. This paper proposes several techniques to make
hardware-based data prefetching power-aware. Our pro-
posed techniques include three compiler-based approaches
which make the prefetch predictor more power efficient. The
compiler identifies the pattern of memory accesses in order
to selectively apply different prefetching schemes depend-
ing on predicted access patterns and to filter out unneces-
sary prefetches. We also propose a hardware-based filter-
ing technique to further reduce the energy overhead due to
prefetching in the L1 cache. Our experiments show that the
proposed techniques reduce the prefetching-related energy
overhead by close to 40% without reducing its performance
benefits.
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1. INTRODUCTION
In recent years, energy and power efficiency have become

key design objectives in microprocessors, in both embed-
ded and general-purpose domains. Although considerable
research [27, 3, 24, 25, 9, 21, 17, 18] has been focused on
improving the performance of prefetching mechanisms, the
impact of prefetching techniques on processor energy effi-
ciency has not yet been fully investigated.

Our experiments [12] on five hardware-based data prefetch-
ing techniques show that while aggressive prefetching tech-
niques often help to improve performance, in most of the
applications, they increase memory system energy consump-
tion by as much as 30%. In many systems [11, 20], this is
equivalent to more than 15% increase in chip-wide energy
consumption.

We implemented two software prefetching techniques [22,
18] to compare the performance and energy efficiency of
hardware and software prefetching. The results show that
in general software prefetching is more energy-efficient while
hardware prefetching yields better performance for most ap-

plications. In this paper, we focus on making one of the
hardware prefetching techniques (which yields the best per-
formance speedup) more energy-efficient without sacrificing
its performance benefits.

Aggressive hardware prefetching is beneficial in many ap-
plications as it helps to hide memory-system related per-
formance costs. By doing that, however, it often signifi-
cantly increases energy consumption in the memory system.
The memory system consumes a large fraction of the total
chip-energy and it is therefore a key area targeted for en-
ergy optimizations. Our experiments show that most of the
energy degradation is due to the prefetch-hardware related
energy costs and unnecessary L1 data-cache lookups related
to prefetches that hit in the L1 cache.

We propose several power-aware techniques for hardware
data prefetching to reduce the energy overheads stated above.
The techniques include:

• A compiler-based prefetch filtering approach, which re-
duces energy consumption by only searching the pre-
fetch hardware tables for selective memory instructions
identified by the compiler;

• A compiler-assisted selective prefetching mechanism,
which utilizes compiler supplied static information to
selectively apply different prefetching schemes depend-
ing on predicted access patterns;

• A compiler-driven filtering technique using a runtime
stride counter designed to reduce prefetching energy
consumption wasted on memory access patterns with
very small strides; and

• A hardware-based filtering technique applied to fur-
ther reduce the L1 cache related energy overhead due
to prefetching.

The SimpleScalar [6] simulation tool has been modified
to implement the different prefetching techniques and col-
lect statistics on performance as well as switching activity in
the memory system. The compiler passes for both software
prefetching and power-aware hardware prefetching are im-
plemented using the SUIF infrastructure [30]. To estimate
power consumption in the memory system, we use state-
of-the-art low-power cache circuits and simulate them using
HSpice. Our experiments show that the proposed techniques
successfully reduce the prefetching-related energy overheads
by 40% on average, without reducing the performance ben-
efits of prefetching.
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Figure 1: Performance speedup for different
prefetching schemes.

The rest of this paper is organized as follows. Section 2 de-
scribes the energy overhead of data prefetching. The energy-
aware prefetching solutions are presented in Section 3. Sec-
tion 4 presents the experimental assumptions. Section 5
gives a detailed analysis of the results. The related work is
presented in Section 6, and we conclude with Section 7.

2. MOTIVATION
Our previous work [12] has evaluated the energy perspec-

tive of hardware-based data prefetching techniques. In ad-
dition to the hardware techniques evaluated, we also im-
plemented two software prefetching techniques [22, 18] and
compare their performance and energy consumptions to the
hardware mechanisms. More details and background on the
this section can be found in [12].

To explore the energy aspects of data prefetching tech-
niques, we provide experimental results for the following five
prefetching techniques:

• Stride prefetching [3] - Focuses on array-like struc-
tures, it catches constant strides in memory accesses
and prefetches using the stride information;

• Dependence-based prefetching [24] - Designed to pre-
fetch on pointer-intensive programs containing linked
data structures where no constant strides can be found;

• A combined stride and dependence-based approach -
Focuses on general-purpose programs, which often use
both array and pointer structures, to achieve benefits
from both stride and pointer prefetching.

• Compiler-based prefetching similar to [22] - Use the
compiler to insert prefetch instructions for strided ar-
ray accesses.

• Compiler-based prefetching on Linked Data Structures
- Uses the greedy approach in [18] to prefetch pointer
structures.

The first three techniques are hardware-based and they
require the help of one or more hardware history tables to
trigger prefetches. The last two are software-based tech-
niques which use compiler analysis to decide what addresses
should be prefetched and where in the program to insert the
prefetch instructions.

The performance improvement of the five prefetching tech-
niques is shown in Figure 1. The first five benchmarks are
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Figure 2: Total cache energy consumption.

from SPEC2000 benchmarks; the last five are Olden bench-
marks which contains many pointers and linked data struc-
tures.

As we expected, stride prefetching does very well on per-
formance for SPEC2000 benchmarks, averaging just over
25% speedup across the five applications studied. In con-
trast, the dependence-based approach achieves an average
speedup of 27% on the five Olden benchmarks. The com-
bined approach achieves the best performance speedup among
the three hardware techniques, averaging about 40%. In
general, the combined technique is the most effective ap-
proach for general-purpose programs (which typically con-
tain both array and pointer structures).

For the two software techniques, the compiler-based tech-
nique for strided accesses achieves almost 60% speedup on
art and about 40% on em3d, with an average of 16% in
performance speedup. The scheme for linked data struc-
tures yields an average of 55%, but it does extremely well
on perim(a speedup of 5.6x). Without perim, the average
speedup goes down to just 10%.

The memory system, including caches, consumes a sig-
nificant fraction of the total processor energy. For example,
the caches and translation look-aside buffers (TLB) consume
23% of the total power in the Alpha 21264 [11], and the
caches alone use up 42% of the energy in the StrongARM
110 [20]. It is clear that the L1 and L2 caches, and the
prefetching hardware tables could amount to about half of
the total processor energy consumption.

We calculated the total energy consumption in the mem-
ory system for each prefetching technique based on HSpice;
for more details, see Section 4. The results are shown in
Figure 2. In the figure, we show the energy breakdown
for (from bottom to top for each bar) L1 dynamic energy,
L1 leakage, L2 dynamic energy, L2 leakage, L1 tag lookups
due to prefetching, and prefetch hardware table accesses for
hardware prefetching or prefetch instruction overhead for
software prefetching.

The results in Figure 2 show that the three hardware-
based prefetching schemes result in a significant energy con-
sumption overhead, especially in the combined prefetching
approach. The average increase for the combined approach
is more than 28%, which is mainly due to the prefetch ta-
ble accesses and the extra L1 tag lookups due to prefetch-
ing. Software prefetching also increases energy consumption
for most of the benchmarks, especially in mcf and em3d.
However, compared to the combined hardware prefetching,
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Figure 3: Power-aware prefetching architecture for
general-purpose programs

software prefetching techniques are more energy-efficient for
most of the benchmarks.

Considering both performance and energy-efficiency, it
seems that there is no single prefetching solution which would
yield the best performance and at the same time consume
the least energy consumption. Based on our observation,
the combined hardware-based technique outperforms others
in terms of speedup for most benchmarks although it con-
sumes considerably more energy than the other four tech-
niques. The question is: can we make the combined hard-
ware prefetching more energy-efficient without sacrificing its
performance benefits?

3. ENERGY-AWARE PREFETCHING TECH-
NIQUES

In this section, we will discuss how to reduce the en-
ergy overhead for the most aggressive hardware prefetch-
ing scheme, the combined stride and pointer prefetching.
This scheme gives the best performance speedup for general-
purpose programs, but it is the worst in terms of energy
efficiency.

3.1 Overview
Our experimental results show that most of the energy

overhead due to prefetching comes from two areas. The
major part is from the prefetching prediction phase: when
we search/update the prefetch history table to find potential
prefetching opportunities; Another significant part of the
energy overhead comes from the extra L1 tag-lookups. This
is because many unnecessary prefetches are issued by the
prefetch engine.

Figure 3 shows the modified combined prefetching archi-
tecture including four energy-saving components. The first
three techniques are compiler-based approaches used to re-
duce prefetch-table related costs and some extra L1 tag
lookups due to prefetching. The last one is a hardware-based
approach designed to reduce the extra L1 tag lookups. The
techniques proposed, as numbered in Figure 3, are:

SUIF 
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.C .CPP Source Code

Power-aware
Prefetch Analysis

Backend

Binaries (.exe)

Pointer and stride analysis

Distinguish non-critical 
and scalar accesses 

Generating prefetching
stride information for filtering

Select prefetching schemes
based on memory access patterns

Figure 4: Compiler analysis used for power-aware
prefetching

1. A compiler-based prefetch filtering approach which re-
duces prefetch hardware energy cost by only searching
the prefetch hardware tables for memory instructions
selected by the compiler;

2. A compiler-assisted selective prefetching mechanism
which utilizes the compiler supplied static information
to selectively apply different prefetching schemes de-
pending on predicted access patterns;

3. A compiler-driven filtering technique using a runtime
stride counter, designed to reduce prefetching attempts
and energy consumption wasted on memory access pat-
terns with very small strides; and

4. A hardware-based filtering technique applied to fur-
ther reduce the L1 cache-related energy overhead due
to prefetching.

The compiler-based approaches help make the prefetch
predictor more selective based on program information ex-
tracted. With the help of the compiler hints, the energy-
aware prefetch engine performs much fewer searches in the
prefetch hardware tables and issues fewer prefetches, which
results in less energy overhead being consumed in L1 cache
tag-lookups.

Figure 4 shows the compiler passes in our approach. Pre-
fetch analysis is the process where we generate the prefetch-
ing hints, including whether or not we will do prefetching,
which prefetcher to choose, and the stride information. A
speculative pointer and stride analysis approach [13] is ap-
plied to help analyze the programs and generate the in-
formation we need for prefetch analysis. Compiler-assisted
techniques require the modification of the instruction set
architecture to encode the prefetch hints generated by the
compiler analysis. These hints could be accommodated by
reducing the number of offset bits. We will discuss how
to perform the analysis for each of the techniques in detail
later.

In addition, our hardware-based filtering technique uti-
lizes the temporal and spatial locality of prefetching requests
to filter out the requests trying to prefetch the same cache
line as prefetched recently. The technique is based on a small
hardware buffer called the Prefetch Filtering Buffer (PFB).



3.2 Compiler-Based Prefetch Filtering (CBPF)
One of our observations is that not all load instructions

are useful for prefetching. Some instructions, such as scalar
memory accesses, have no access patterns and cannot any-
way trigger useful prefetches when fed into the prefetcher.

We use the compiler to distinguish memory accesses use-
ful for prefetching from those which my have no benefit.
Only those useful load instructions, selected by the compiler,
are fed into the prefetcher. Instructions identified with ”no
prefetching potential” will not be added to the prefetch his-
tory table. Thus, these instructions will not contribute to
the energy consumption overhead.

The compiler identifies the following memory accesses as
having ”no prefetching potential”:

• Non-critical accesses: Memory accesses within a loop
or a recursive function are regarded as critical accesses.
Because prefetching schemes are anyway designed to
capture the memory access patterns in critical program
phases, we can safely filter out the non-critical accesses
before they reach the prefetcher.

• Scalar accesses: Scalar accesses do not have any pat-
tern and will not contribute to the prefetcher if fed
into the prefetcher. Only memory accesses to array
structures and linked data structures will be sent to
the prefetcher to make prefetching decisions.

The instructions selected by the compiler are annotated
with ”no prefetching potential” and are filtered out before
they are fed into the prefetcher. This optimization could
eliminate on average as much as 8% of all the prefetch table
accesses, as we will show later.

3.3 Compiler-Assisted Selective
Prefetching (CASP)

Another compiler approach focuses on how to help the
prefetch predictor to choose one of the prefetching schemes
in the combined prefetching approach.

One important aspect of the combined approach is that
it uses two techniques independently and prefetches based
on the memory access patterns for all memory accesses. As
we know, stride prefetching works better on array-based ac-
cesses and dependence-based prefetching is more appropri-
ate for pointer-based structures. One obvious approach is
therefore to distinguish these two types of accesses.

Distinguishing between pointers and non-pointer accesses
is difficult during execution time. However, we can distin-
guish them easily during compilation passes. Array accesses
and pointer accesses are annotated using hints written into
the instructions. During runtime, the prefetch engine can
identify the hints and apply different prefetching mecha-
nisms.

We have found that simply splitting the array and pointer
structures is not very effective and affects the performance
speedup (which is the primary goal of prefetching techniques).
Instead, we use the following heuristic to decide whether we
should use stride prefetching or pointer prefetching:

• Memory accesses to an array which does not belong to
any larger structure (e.g., fields in a C struct) are only
fed into the stride prefetcher;

• Memory accesses to an array which belongs to a larger
structure are fed into both stride and pointer prefetch-
ers;

• Memory accesses to a linked data structure with no
arrays are only fed into the pointer prefetcher;

• Memory accesses to a linked data structure that con-
tains arrays are fed into both prefetchers.

The above heuristic is able to preserve the performance
speedup benefits of the aggressive prefetching scheme. We
can filter out up to 20% of all the prefetch-table accesses and
up to 10% of the extra L1 tag lookups due to prefetching,
by applying this technique.

3.4 Compiler-Hinted Filtering Using a Run-
time Stride Counter(SC)

Another part of prefetching energy overhead comes from
memory accesses with small strides. Accesses with very
small strides (compared to the cache line size of 32 bytes
we use) could result in frequent accesses to the prefetch ta-
ble and issuing more prefetch requests than needed. For
example, if we have an iteration on an array with a stride of
4 bytes, we will access the hardware table at least 8 times
before we reach the point where we can issue a useful pre-
fetch to get a new cache line. The overhead not only comes
from the extra prefetch table accesses; 8 different prefetch
requests are also issued to prefetch the same cache line dur-
ing the 8 iterations.

Software prefetching would be able to avoid the penalty by
doing loop unrolling. In our approach, we use hardware to
accomplish loop unrolling with assistance from the compiler.
The compiler predicts as many strides as possible based on
static information. Stride analysis is applied not only for
array-based memory accesses, but we also predict strides for
pointer accesses with the help of pointer analysis. Detailed
information on how to do the pointer and stride analysis
could be found in [13].

Strides predicted as larger than half of the cache line size
(16 bytes) will be considered as large enough since they
will be able to reach a different cache line after each iter-
ation. Strides smaller than the half of the cache line size
will be recorded and passed to the hardware. This is a
very small 8-entry buffer used to record the most recently
used instructions with small strides. Each entry contains
the program counter (PC) of the particular instruction and
a stride counter. The counter is used to count how many
times the instruction occurs after it was last fed into the
prefetcher. The counter will be set to a maximal value (de-
cided by cache line size/stride) and is then decremented by
one each time the instruction is executed. The instruction is
only fed into the prefetcher when its counter is decreased to
zero; then, the counter will be reset to the maximum value.

For example, if we have an array access (in a loop) with a
stride of 4 bytes, the counter will be set to 8 initially. Thus,
during eight occurrences of this load instruction, only once
it is sent to the prefetcher.

This technique reduces 5% of all the prefetch table ac-
cesses as well as 10% of the extra L1 cache tag lookups,
while resulting in less than 0.3% performance degradation.

3.5 Hardware Prefetch Filtering Using PFB
To further reduce the L1 tag-lookup related energy con-

sumption, we add a hardware-based prefetch filtering tech-
nique. Our approach is based on a very small hardware
buffer called the Prefetch Filtering Buffer(PFB).



When a prefetch engine predicts a prefetching address, it
does not prefetch the data from that address immediately
from the lower-level memory system (e.g., L2 Cache). Typ-
ically, tag lookups on L1 tag-arrays are performed. If the
data to be prefetched already exists in the L1 Cache, the
prefetch request from the prefetch engine is dropped. A
cache tag-lookup costs much less energy compared to a full
read/write access to the low-level memory system (e.g., the
L2 cache). However, associative tag-lookups are still energy
expensive.

To reduce the number of L1 tag-checks due to prefetching,
we add a PFB to remember the most recently prefetched
cache tags. We check the prefetching address against the
PFB when a prefetching request is issued by the prefetch
engine. If the address is found in the PFB, the prefetching
request is dropped and we assume that the data is already
in the L1 cache. When the data is not found in the PFB,
we perform normal tag lookup and proceed according to
the lookup results. The LRU replacement algorithm is used
when the PFB is full. The prefetch filtering scheme using
the PFB is shown in Figure 3.

A smaller PFB costs less energy per access, but can only
filter out a smaller number of useless prefetches. A larger
PFB can filter out more useless prefetches, but each access
to the PFB costs more energy. To find out the optimal size
of the PFB, we simulated a set of benchmarks with PFB
sizes of 1 to 16. We will show in Section 5 that an 8-entry
PFB is large enough to accomplish the prefetch filtering task
with very small performance overhead.

PFBs are not always correct in predicting whether the
data is still in L1 since the data might have been replaced
although its address is still present in the PFB. We call
this case a PFB misprediction. High PFB mispredictions
would result in performance loss because useful prefetches
are dropped. Fortunately, as we will show later, the PFB
misprediction rate is very low (close to 0).

4. EXPERIMENTAL ASSUMPTIONS

4.1 Experimental Framework
We implement the hardware-based data prefetching tech-

niques by modifying the SimpleScalar [6] simulator. The
software prefetching schemes are implemented using SUIF [30]
and simulated with the modified SimpleScalar which can
recognize prefetch instructions. We also use SUIF to im-
plement the compiler passes for power-aware prefetching,
generating annotations for all the prefetching hints which
we later transfer to assembly codes. The binaries input to
the SimpleScalar simulator are created using a native Alpha
assembler. The parameters we use for the simulations are
listed in Table 1.

The benchmarks evaluated are listed in Table 2. The
SPEC2000 benchmarks [1] use mostly array-based data struc-
tures, while the Olden benchmark suite [23] contains pointer-
intensive programs that make substantial use of linked data
structures. We randomly select a total of ten benchmark
applications, five from SPEC2000 and five from Olden. For
SPEC2000 benchmarks, we fast forward the first one billion
instructions and then simulate the next 100 million instruc-
tions. The Olden benchmarks are simulated to completion
except for one (perimeter), since they complete in relatively
short time.

Table 1: Baseline parameters
Processor speed 1GHz
Issue 4-way, out-of-order
L1 D-cache 32KB, CAM-tag, 32-way, 32bytes

cache line
L1 I-cache 32KB, 2-way, 32bytes cache line
L1 cache latency 1 cycle
L2 cache unified, 256KB, 4-way, 64bytes

cache line
L2 cache latency 12 cycle
Memory latency 100 cycles latency + 10 cycles/word

Table 2: SPEC2000 & Olden benchmarks
Benchmark Description

SPEC2000
181.mcf Combinatorial Optimization
197.parser Word Processing
179.art Image Recognition / Neural Nets
256.bzip2 Compression
175.vpr Versatile Place and Route

Olden
bh Barnes & Hut N-body Algorithm
em3d Electromagnetic Wave Propagation
health Colombian Health-Care Simulation
mst Minimum Spanning Tree
perimeter Perimeters of Regions in Images

4.2 Energy Modeling
To accurately estimate power and energy consumption

in the L1 and L2 caches, we perform circuit-level simula-
tions using HSpice. We base our design on a recently pro-
posed low-power circuit [32] that we implemented in 100-
nm BPTM technology. Our L1 cache includes the follow-
ing low-power features: low-swing bitlines, local word-line,
CAM-based tags, separate search lines, and a banked archi-
tecture. The L2 cache we evaluate is based on a banked
RAM-tag design.

As we expect that implementations in 100-nm technology
would have significant leakage, we apply a recently proposed
circuit-level leakage reduction technique called asymmetric
SRAM cells [2]. This is necessary because otherwise our con-
clusions would be skewed due to very high leakage power.
The speed enhanced cell in [2] has been shown to reduce
L1 data cache leakage by 3.8X for SPEC2000 benchmarks
with no impact on performance. For L2 caches, we use the
leakage enhanced cell which increases the read time by 5%,
but can reduce leakage power by at least 6X. In our eval-
uation, we assume speed-enhanced cells for L1 and leakage
enhanced cells for L2 data caches, by applying the different
asymmetric cell techniques respectively.

The power consumption for our L1 and L2 caches are
shown in Table 3.

If an L1 miss occurs, energy is consumed not only in L1
tag-lookup, but also when writing the requested data back
to L1. L2 accesses are similar, except that an L2 miss goes
to off-chip main memory.

Each prefetching history table is implemented as a 64×64
fully-associated CAM-array. The power consumption for



Table 3: Cache configuration and power consump-
tion

Parameter L1 L2

size 32KB 256KB
tag array CAM-based RAM-based
associativity 32-way 4-way
bank size 2KB 4KB
# of banks 16 64
cache line 32B 64B

Power (mW)

tag 6.5 6.3
read 9.5 100.5
write 10.3 118.6
leakage 3.1 23.0
reduced leakage 0.8 1.5

Table 4: Prefetch hardware table and power con-
sumption

Table implementation 64×64 CAM-array
P update (including lookup) 7.4mW
P lookup 7.3mW

each lookup is 7.3mW and each update to the table costs
7.4mW based on HSpice simulation. The power numbers
are shown in Table 4. The leakage energy of these hardware
tables are very small compared to L1 and L2 caches due to
their small area.

For software prefetching, the cost of the execution of a
prefetch instruction includes an access to the L1 instruction
cache by the prefetch instruction, and the pipeline cost of in-
struction fetching, decoding, and the calculation of prefetch-
ing addresses. These extra costs will increase the total en-
ergy consumption. Each L1 instruction cache access con-
sumes about the same energy as an L1 data cache access,
and the rest of the execution costs is generally compara-
ble to an L1 data cache access [5]. Thus we assume that
each prefetch instruction executed would consume an extra
cost of roughly two times the L1 cache read energy cost in
Figure 2.

5. RESULTS AND ANALYSIS
We simulated each of the four energy-saving techniques

and evaluated their impact on energy consumption as well
as performance speedup. All the techniques are applied to
the combined stride and dependence-based pointer prefetch-
ing. We first show the results by applying each of the four
techniques individually; and then, we apply them together
in order.

5.1 Compiler-Based Techniques
Figure 5 shows the results for the three compiler-based

techniques, first separately and then combined. The results
shown are normalized to the baseline, which is the combined
stride and pointer prefetching scheme without any of the
new techniques.

Figure 5(a) shows the number of prefetch table accesses.
The compiler-based prefetching filtering (CBPF) works best
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Figure 5: Simulation results for the three compiler-
based techniques: (a) normalized number of the pre-
fetch table accesses; (b) normalized number of the
L1 tag lookups due to prefetching; and (c) impact
on performance.

for parser : more than 33% of all the prefetch table accesses
are eliminated. On average, CBPF achieves about 7% re-
duction in prefetch table accesses. The compiler-assisted
selective prefetching (CASP) achieves the best reduction for
health, about 20%, and on average saves 6%. The stride
counter filtering (SC) technique removes 12% of prefetch ta-
ble accesses for bh, with an average of over 5%. The three
techniques combined filter out more than 20% of the pre-
fetch table accesses for five of the ten benchmarks, with an
average of 18% across all applications.

Figure 5(b) shows the extra L1 tag lookups due to prefetch-
ing. CBPF reduces the tag lookups by more than 8% on
average; SC removes about 9%. CASP does not show a lot
of savings, averaging just over 4%. The three techniques
combined achieve tag-lookup savings of up to 35% for bzip2,
averaging 21% compared to the combined prefetching base-
line.

The performance penalty introduced by the three tech-
niques is shown in Figure 5(c). As shown, the performance
impact is negligible. The only exception is em3d, which has
less than 3% of performance degradation, due to filtering
using SC.

5.2 Prefetch Filtering Using PFB
Prefetch filtering using PFB will filter out those prefetch

requests which would result in a L1 cache hit if issued. We
simulated different sizes of PFB to find out the best PFB
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Figure 6: The number of L1 tag lookups due to
prefetching after applying the hardware-based pre-
fetch filtering technique with different sizes of PFB.

size, considering both performance and energy consumption.
Figure 6 shows the number of L1 tag lookups due to prefetch-
ing after applying the PFB prefetch filtering technique with
PFB sizes ranging from 1 to 16.

As we can see from the figure, even a 1-entry PFB can
filter out about 40% of all the prefetch tag accesses (on av-
erage). An 8-entry PFB can filter out over 70% of tag-checks
with almost 100% accuracy. Increasing the PFB size to 16
does not increase the filtering percentage significantly. The
increase is about 2% on the average compared to an 8-entry
PFB, while the energy cost per access doubles.

We also show the ideal situation (OPT in the figure),
where all the prefetch hits are filtered out. For some of
the applications, such as art and perim, the 8-entry PFB
is already very close to the optimal case. This shows that
an 8-entry PFB is a good enough choice for this prefetch
filtering.

Table 5: The number of PFB mispredictions for dif-
ferent sizes of PFBs

Bench PFB-1 PFB-2 PFB-4 PFB-8 PFB-16

mcf 0 0 0 1 9
parser 0 0 0 0 0
art 0 0 0 0 0
bzip2 0 0 0 0 0
vpr 0 0 0 0 0
bh 0 0 0 0 0
em3d 0 0 0 0 0
health 0 0 0 0 1
mst 0 0 11 11 11
perimeter 0 0 0 0 0

As we stated before, PFB predictions are not always cor-
rect: it is possible that a prefetched address still resides in
the PFB but it does not exist in the L1 cache (it has been
replaced). The number of PFB mispredictions is shown in
Table 5. Although the number of mispredictions increases
with the size of the PFB, an 8-entry PFB makes almost
perfect predictions and does not affect performance.

5.3 Energy Savings
We apply the techniques in the following order CBPF,

CASP, SC, and PFB. We show the energy savings after each
technique is added in Figure 7.
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Figure 7: Energy consumption in the memory sys-
tem after applying different energy-aware prefetch-
ing schemes.
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Figure 8: Performance speedup after applying dif-
ferent energy-aware prefetching schemes.

Compared to the combined stride and pointer prefetching,
the compiler-based prefetch filtering (CBPF) shows good
improvement for mcf and parser, with an average reduction
of total memory system energy of about 3%.

The second scheme, compiler-assisted selective prefetch-
ing (CASP), reduces the energy consumed by about 2%,
and shows good improvement for health and em3d (about
5%).

The stride counter approach is then applied. It reduces
the energy consumption for both prefetch hardware tables
and L1 prefetch tag accesses. It improves the energy con-
sumption consistently for almost all benchmarks, achieving
an average of just under 4% savings on the total energy
consumption.

Finally, the prefetch filtering technique is applied with
an 8-entry PFB. The PFB reduces more than half of the
L1 prefetch tag lookups and improves the total energy con-
sumption by about 3%.

Overall, the four power-saving techniques together reduce
by almost 40% the energy overhead of the combined prefetch-
ing approach: the energy overhead due to prefetching is re-
duced from 28% to 17%. This is about 11% of the total
memory system energy (including L1, L2 caches and pre-
fetch tables).

5.4 Performance Degradation
Figure 8 shows the performance statistics associated with

each of the four techniques.
We can see that there is no performance impact except

for em3d where stride-filtering yields less than 3% speedup
degradation. On average, the performance degradation is
only 0.4%, while we achieve an average energy saving of
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Figure 9: Energy-delay product with different
energy-aware prefetching schemes.

11%.

5.5 Energy-Delay Product
Finally, the energy-delay product (EDP) is shown in Fig-

ure 9. The EDP is normalized to the case where no prefetch-
ing algorithms are used. Compared to the combined stride
and pointer prefetching, the EDP improves by almost 25%
for parser. On average, the four power-aware prefetching
techniques combined improve the EDP by about 11%.

6. RELATED WORK
Prefetching has been an active area of research for a long

time. Both hardware [27, 3, 24, 25, 9] and software [7, 22, 17,
18] techniques have been proposed for prefetching in recent
years. Hardware-based techniques typically uses a hardware
table to remember the recent load instructions and set up
certain relations between the load instructions. These rela-
tions are used to predict future (potential) load addresses
used for prefetching. Software prefetching techniques nor-
mally need the help of compiler analysis, inserting explicit
prefetch instructions into the executables. The prefetch in-
structions are supported by most contemporary micropro-
cessors [4, 10, 15, 26].

Many recent compiler-assisted prefetching techniques use
profiling as an effective tool to recognize data access pat-
terns used for making prefetch decisions. Luk et al. [19] uses
profiling to analyze executable codes to generate post-link
relations which can be used to trigger prefetches. Wu [31]
proposes a technique which discovers regular strides for ir-
regular code based on profiling information. Chilimbi et
al. [8] use profiling to discover dynamic hot data streams
which are used for predicting prefetches. Inagaki et al. [14]
implemented a stride prefetching technique for Java objects.
We did not compare to these techniques because our tech-
niques does not needs the help of profiling.

Most of the current prefetching research work focuses on
how to improve performance. Related to our paper, a static
filter [28] was proposed to reduce memory traffic. Profiling
was used to select which load instructions generate data ref-
erences that are useful prefetch triggers. In our approach
by contrast, we use static compiler analysis and a hardware-
based filtering buffer (PFB), instead of profiling-based fil-
ters.

Wang et al. [29] also propose a compiler-based prefetch-
ing filtering technique to reduce traffic resulting from un-
necessary prefetches. Their prefetching mechanism is based
on [16], which prefetches data blocks from main memory into

the L2 cache instead of the typical prefetching from L2 to
L1. Although the above two techniques have the potential
to reduce prefetching energy overhead, there are no specific
discussions or quantitative evaluation of the prefetching en-
ergy consumption.

7. CONCLUSION
This paper explores the energy-efficiency aspects of data-

prefetching techniques and proposes several new techniques
to make prefetching energy-aware. Our proposed techniques
include three compiler-based approaches which help to make
the prefetch predictor more selective and filter out unnec-
essary prefetches based on static program information. We
also propose a hardware based filtering technique to further
reduce the energy overheads due to prefetching in the L1
cache. Our experiments show that the proposed techniques
combined reduce the prefetching-related energy overheads
by 40%, with almost no impact on performance.
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