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Abstract 
As technology scales, more sophisticated fabrication 
processes cause variations in many different parameters in 
the device. These variations could severely affect the 
performance of processors by making the latency of circuits 
less predictable and thus requiring conservative design 
approaches. In this paper, we use Monte-Carlo simulations 
in addition to worst-case circuit analysis to establish the 
overall delay due to process variations in a cache sub-
system under both typical and worst-case conditions. The 
distribution of a cache critical-path-delay in the typical 
scenario was determined by performing Monte-Carlo 
simulations at different supply voltages, threshold voltages, 
and transistor lengths on a complete cache design. In 
addition to establishing the delay variation, we present an 
adaptive variable-cycle-latency cache architecture that 
mitigates the impact of process variations on access latency 
by closely following the typical latency behavior rather 
than assuming a conservative worst-case design-point. 
Simulation results show that our adaptive data cache can 
achieve a 9% to 21% performance improvement in a 
superscalar processor, on the SPEC2000 applications 
studied, compared to a conventional design. Additional 
performance improvement potential exists in processors 
where the data cache access is on the critical path, by 
allowing a more aggressive clock rate. 

 

1. Introduction 
 

As technology scales, the feature size reduces thereby 
requiring a sophisticated fabrication process. The 
manufacturing process causes variations in many different 
parameters in the device, such as the effective channel 
length Leff, the oxide thickness tox, and the threshold voltage 
Vth. These variations increase as the feature size reduces 
due to the difficulty of fabricating small structures 
consistently across a die or a wafer [3]. Controlling the 
variation in device parameters during fabrication is 
becoming therefore a great challenge for scaled 
technologies. 

The performance of integrated circuits can be greatly 
affected by these variations. The process variations are 
random in nature and are expected to become significant in 
the smaller geometry transistors commonly used in 
memories. Question is whether there is a significant enough 
delay variation overall that will drive a change in memory 
architecture design. 

Our simulation results with HSPICE show that process 
variations on effective channel length and threshold voltage 
at 32-nm CMOS technology can affect the performance, 
after all factors are considered, at around 2-3X under the 
worst-case operating conditions. To account for the worst-
case scenario we might need to increase the cache access 
time by 2 to 3 cycles or adopt other design approaches. 
Application performance could be impacted by as much as 
30-40% as shown in Figure 1. 
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Figure 1. Application performance for different cache access 

cycles in 4-way superscalar (see Table 4 for parameters). 
These results suggest that process variations must be 

taken into consideration while designing circuits and 
perhaps even architectures. There are several ideas that 
could be exploited in a memory system: 1) reduce 
performance by operating at a lower clock frequency 
(conservative approach); 2) increase cache access latency 
assuming worst-case delay (conservative approach); and 3) 
variable delay cache architecture (adaptive approach 
proposed in this paper). The first approach would clearly 
have a large impact on overall performance. The second 



approach would also have a significant impact as shown 
above in Figure 1. 

The goal of this paper is to estimate both the worst-
case and typical delay variation expected in a state-of-the-
art cache and to introduce an adaptive cache system that 
would mitigate the impact of process variations without 
taking any of the conservative design paths suggested 
earlier.  

The rest of this paper is organized as follows. Section 2 
presents a detailed analysis on the impact of process 
variation on caches under worst-case and expected 
behavior conditions. To estimate the typical delay in a 
cache, we determine the distribution of delays by 
performing Monte-Carlo sampling at different supply 
voltages, threshold voltages, and transistor lengths. In 
Section 3, we describe architecture techniques to mitigate 
the effect of process variations and propose a variable-cycle 
adaptive cache. We show simulation results in Section 4 by 
running applications on a superscalar processor with this 
design.  We have implemented the cache at circuit level 
and extended the SimpleScalar [5] architecture simulator.  
We use a set of SPEC2000 [2] benchmarks to compare the 
performance with a conventional approach. We conclude in 
Section 5. 

 

2. Impact of Process Variation in Caches 
 

In this section, we analyze the impact of different 
sources of process variations in caches under worst-case-
operating and expected-behavior conditions. We use a 
state-of-the-art low power cache that we have designed in 
our research group as the starting point for our evaluation.  

Table 1 shows the configuration of this cache design.  

 
Table 1. Configuration of our 16 KB Low Power Cache  

Cache Component Power Optimization Technique 

Tag Array  10 transistors CAM Cells 

Data Array 6T SRAM Cells 

Cache Line Wordline Gating 

Tag and Data Array Cache Subbanking 

Column S. A. Alpha Latch S. A. and Sharing 
Sense Amplifiers 

Bank Decoder 4-input static NOR gates 

Line Decoder 
Two level decoding: First level 3-
input Dynamic NAND gate and 
Second level 2-input NOR gate 

 

In order to evaluate the impact of the parameter 
variations on circuit speed we consider variability on the 

critical path. The critical path of our CAM-tag cache is 
shown in Figure 2.  

The CAM-Tag critical path in our design is composed 
of the global address decoder to select a bank, tristate I/O to 
drive the search bitlines, the dynamic match comparators in 
the CAM cells, wordline gating, the data SRAM array, 
column multiplexer, sense amplifier and the tristate I/O 
drivers connecting back to the CPU. The tristate bus that 
connects one 32-bit subbank column back to the CPU 32-
bit load data path has the same fan-in in all configurations. 

Process variations in caches affect the performance of 
circuits like sense amplifiers that require identical device 
characteristics, and SRAM cells that require near-
minimum-sized cell stability for large arrays in embedded, 
low-power applications. In addition, the delay of the 
address decoders suffer from the process variations that can 
result in shorter time left for accessing the SRAM cells.  

In order to examine delay tradeoffs under process 
variations, we have evaluated the impact of process 
variations under both worst-case operating and typical 
behavioral conditions. The goal here is to establish a worst-
case baseline that might be used in conventional 
conservative designs and also a typical behavior that could 
be used to estimate the benefits of migrating to an adaptive 
design.  
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Figure 2. Critical path of a CAM-tag cache 

 

2.1 Worst-Case Conditions 
  

Under worst-case operating conditions, we assume that 
parameter variations happen at each transistor in the cache 
critical path. We have used the HSPICE circuit simulator at 
32-nm PTM device model [1]. The nominal value used for 
Vth is 0.2V and the nominal value for Leff is 25.3nm, given 
by the PTM technology [1]. 

 

 



2.1.1 Channel Length Variation 
 

Channel length variation Leff is due to limitation in the 
lithographic process. These variations result in changes in 
device performance characteristics. A total of 40% 
variation in effective channel length Leff is expected within 
a die [3]. We have found that the use of longer effective 
channel lengths tends to increase the wordline and bitline 
capacitances in caches, thus increasing access time as 
shown in Figure 3. The access time can vary by as much as 
2.13X. 
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Figure 3. Effect of Leff variation on cache delay 

 

2.1.2 Threshold Voltage Variation 
 

Threshold voltage can vary due to (1) changes in oxide 
thickness, (2) changes in the dopant levels in the substrate, 
polysilicon and implants, and (3) surface charge. Accurate 
control of Vth is very important for many performance and 
power optimizations and for correct execution [6]. Higher 
transistor threshold voltage Vth, due to process variations, 
impacts the access time due to the lower read current as 
shown in Figure 4. The impact on the access time could be 
as much as 2.7X. 

 

2.1.3 Supply Voltage Variation 
 

One of the most important environmental factors that 
cause variations in operating condition is supply voltage 
(Vdd). In deep submicron technology the supply voltage is 
typically scaled down to reduce power consumption; 
effects such as the IR voltage drop and L di/dt noise can 
affect the voltage level at the power supply thereby 
modifying the characteristics of the transistors in the 
circuits. 
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Figure 4. Effect of Vth variation on cache delay 

 

A total variation of 15% in Vdd was considered [3] with 
a nominal value of 0.9V. Table 2 summarizes our results 
showing delay for our cache design. From Table 2, a 
reduction in supply voltage causes an increase in the access 
time of the cache by up to 12% of the nominal value. 

 

Table 2. Effect of power supply voltage variations 
Vdd (V) Delay (ns) 

0.83  0.746 
0.86 0.717 
0.90 0.667 
0.93 0.634 
0.97 0.601 

 

The deviations in effective channel length and 
threshold voltage are shown to have a more significant 
contribution to the delay than variations in power supply 
voltage.  The impact on cache access time due to process 
variations and longer wordline/bitline could become very 
significant. The access delay could be impacted by around 
2-3X (compared to the nominal value) when counting all 
the possible process parameters. 

 

2.2 Expected Conditions  
 

The simple use of worst-case values for all parameters 
that have been shown in Section 2.2 can result in larger 
path delay estimates than typical. These will certainly be 
pessimistic but would need to be considered in 
conventional designs. Now, the question we try to answer 
next is what the delay distribution is in a cache due process 
variation? 



To accurately predict critical path delay distribution at 
the circuit level, cache delay variability can be studied 
through Monte-Carlo in HSPICE circuit simulations. 
Process variations are typically represented by continuous 
probability distributions, and are often assumed as normal 
distribution [4]. 

The distribution of delay of a cache critical path was 
determined by performing Monte-Carlo sampling at 
different supply voltages, threshold voltages, and transistor 
lengths. Under the assumption of separated normal 
distributions of Leff, Vth and Vdd variations, Monte-Carlo 
simulations verify model predictions over a wide range of 
process and design conditions. We have used the Monte-
Carlo simulation with 5,000 trials where the variation 
sources all vary simultaneously. We simulate the critical 
path and measure delay with all the parameters varying 
with 3σ and mean values as specified in Table 3. 

 

Table 3. Parameter values and 3σ variations 
Technology 32nm 

Device NMOS PMOS 
Leff 25.32nm (+-20%) 
Vth 0.2V (+-7.5%) -0.21V (+-7.5%) 
Vdd 0.9V (+-7.5%) 

Temp. 75oC 
 

The probability density function (PDF) of the cache 
delay was measured (see Figure 5) for each process 
parameter. Also, we have combined all the parameters in 
another experiment. We have found most the cache 
accesses under the impact of supply voltage or threshold 
voltage parameters would be relatively close to the nominal 
delay. The deviations in Leff are shown to have a significant 
contribution to the delay distribution (wider curve). It is 
also very close to the case with all the parameter combined. 

 

 
Figure 5. Distribution of the cache access latency. 

 
Out of 5,000 random samples, assuming a 1 cycle 

cache at 1 GHz, 2,000 samples of the cache accesses are 
expected to be faulty, resulting in a probability of failure of 

40%. However, with an increased cache delay of 2 cycles 
allowed and after adjusting the path across the components 
to accommodate a larger variation in the SRAM access, the 
probability that this cache will have to take 2 cycles has 
been found to be only 25%. This means that in an adaptive 
scenario only 25% of the accesses would require 2 cycles. 
We have also found that even in this case a small fraction 
of accesses would fail suggesting that there are cases that 
would need 3 cycles for correctness.     

 

3. Architectural Techniques 
 

At the architectural level, we might be able to help to 
mitigate the negative impact of process variation such that 
the low-power circuits and designs can still be applied. 
There are several ideas that could be exploited to cope with 
this problem while not giving up performance. These could 
range from utilizing smaller first level caches (that would 
meet the preferred access time even under worst case 
variation) to more adaptive cache architectures that we will 
present next. 

 

3.1 Conservative Cache 
 

As we have shown in the previous section, process 
variations affect the latency significantly for each cache 
access. The cache access latency difference could be as 
much as 3X if we consider all the possible variations in 
process parameters. The conservative cache would have to 
be based on the worst-case process variation analysis (as 
shown in Section 2.1). Alternatively, one could make the 
cache access time slightly more aggressive (than the 
conservative one) but then the yield would be likely 
affected. 

In a conservative cache design, to ensure the correct 
execution in the pipeline architecture, the cache access 
delay cycles must be decided based on the longest delay 
possible within the process variation range. For example, 
even a small latency increase due to variation may require 
the whole cache access latency to be increased by one or 
more processor cycles. This can severely degrade the 
overall application performance.  

For example, even if we could access 90% of the cache 
lines within 1 cycle, for the remaining 10%, we might need 
2 or 3 cycles to finish the access due to the delay increase 
resulting from process variations. In this situation, we 
might need to assume the worst-case scenario, which is 
three cycles for all the cache accesses. This will, as a result, 
severely affect the total performance and is clearly not a 
choice that we can live with even if some architectural 
tricks could be applied to hide the cost.  
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For example, clever scheduling techniques might try to 
increase the distance between memory reads and consumer 
instructions to hide a longer latency. As we have seen, 
however, there is a limit to how much that can help as very 
often basic blocks are short and the scheduler cannot move 
dependent instructions several cycles away.  

 

3.2 Proposed Adaptive Cache 
 

In the proposed adaptive cache design, instead of 
accessing the cache with a long fixed latency assuming 
worst-case conditions, the adaptive architecture can have 
different access latency for different cache lines. The 
typical case analysis encourages efforts towards developing 
adaptive design methodologies that suppress the impact of 
process fluctuations on performance. The expectation is 
that most of the cache lines will have much lower latency 
compared to the worst-case scenario. 

Figure 6 shows a possible adaptive architecture. One of 
the important blocks in the proposed architecture is the 
delay storage unit. This unit stores the speed information 
and is read along with the data array on every cache access. 
The operation on the delay storage has two phases: 
classification and execution. 

 

 
Figure 6.  The proposed adaptive cache architecture (shown in 

a single 5-stage pipeline). 
 

Delay information for each cache line is first achieved 
during a classification process where each cache line is 
probed individually and its delay information is written into 
the delay storage unit. Then, during the execution phase, 

the delay information is fetched from the delay storage and 
each cache line can be accessed based on its estimated 
speed. 

With the addition of the delay storage, we are able to 
access the cache with an adaptive speed. The adaptive 
architecture will enable us to maximize the performance 
compared to the traditional fixed latency cache architecture.  

The area penalty for this cache is really minimal as we 
only need to use 2 bits (our example with 1-3 cycles 
latencies) for each cache line (or 256 bits) to encode the 
speed. The sense amplifiers would need to be triggered at 
different time points depending on the speed access. In our 
analysis, we have evaluated the area overhead associated 
with extra BIST, delay storage, and control circuitry by 
using the Synopsys Design Compiler CAD tool. We have 
found the overall area overhead to be less than 1% of the 
total cache area. Because the delay storage is a small 
structure, its own delay variation due to process variation is 
relatively small compared to the cache.    

 

4. Results and Analysis 
 

The initial adaptive cache architecture is implemented 
in SimpleScalar with the simulation parameters 
summarized in Table 4. We have conducted simulations of 
SPEC2000 benchmarks using the adaptive approach. We 
vary the cache access latency from 1 to 3 cycles. The 
adaptive cache based on the delay distribution is 
determined by the Monte-Carlo simulation. Based on our 
analysis, the adaptive cache is expected to have 75% of 1 
cycle, 25% of 2 cycles and negligible 3 cycles cache line 
accesses. 

Preliminary results on application performance are 
shown in Figure 7. The comparison is made between a 
conservative cache that requires 3 cycles per access and an 
adaptive cache that has variable cache access latencies. 

Our results show that the adaptive cache design can 
achieve a 9% to 21% performance improvement on the 
applications studied compared to a conservative design 
assuming worst-case latency, while providing resilience 
against failures due to process variations. Using the 
adaptive cache architecture can also mean that one can set 
the clock rate slightly more aggressively: the increase in 
clock rate would likely compensate for a larger fraction of 
memory accesses falling into higher-latency memory 
access categories in a processor. Furthermore, when low 
power is important, a slightly slower cache (e.g., due to 
asymmetric cell designs with some high Vth transistors to 
reduce cell power) would mean a redistribution between 1, 
2, and 3 cycle accesses. 
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Table 4. SimpleScalar parameters for CPU 

Instruction Window RUU=16; LSQ=8 

Fetch, dispatch, commit width 4 

Integer ALU/mult-div 4/1 

FP ALU/mult-div 4/1 

Number of Banks 16 banks 

L1 D-cache Size 16KB, 32-way, 32B blocks, 
2 cycles 

L1 I-cache Size 16KB, 32-way, 32B blocks, 
2 cycles 

L2 Unified Cache Size 128KB, 64-way, 4B blocks, 
8 cycles 

Memory Latency 100 cycles 

Memory Ports 2 

TLB Size 128-entry, fully assoc., 30-
cycle miss penalty 

Branch Predictor 

Comb. Of bimodal and 2-
level gshare; bimodal size 
2048; level1 1024 entries, 

history 10; level2 4096 
entries (global) 

Branch Target Buffer 512-entry, 4-way 

Return-address-stack 8-entry 
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Figure 7. Performance improvement between the adaptive 

cache vs. a conservative cache using 3-cycle access time. 
 

 

 

 

5. Conclusion 
 

Process variations will become worse with technology 
scaling; techniques are necessary at the architecture and 
circuit levels to reduce the impact of these variations while 
providing the highest performance for the given power 
constraints. In this paper, we have found significant delay 
variation between worst-case and expected behavioral 
analysis, motivating us to design adaptive cache 
architecture. We have shown that process variation can 
have a significant impact on delay (2-3X) under worst-case 
operating conditions, while under the expected condition a 
large fraction of accesses would be still close to the 
nominal value. The adaptive cache architecture proposed 
can improve the application performance in a superscalar 
design by as much as 21% depending on the application 
and configurations used, compared to a conservative 
design. The adaptive cache architecture also allows a 
designer to choose the main cache access latency more 
aggressively and possibly increase the clock rate in a 
processor design where cache access is the main critical 
path. Furthermore, it could help strike a better balance 
between power and delay optimizations in a design.  
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