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Abstract- Parameter variations caused by manufacturing 

imprecision at the nanoscale are expected to cause large 

deviations in electrical characteristics of emerging nanodevices 

and nano-fabrics leading to performance deterioration and 

yield loss. Parameter variation is typically addressed 

pre-fabrication, with circuit design targeting worst-case timing 

scenarios. By contrast, if variation is estimated 

post-manufacturing, adaptive techniques or reconfiguration 

could be used to provide more optimal level of tolerance. 

This paper presents a new on-chip sensor design for 

nanoscale fabrics that from its own variation, can estimate the 

extent of systematic variation in neighboring regions. A Monte 

Carlo simulation framework is used to validate the sensor 

design. Known variation cases are injected and based on sensor 

outputs, the extent of systematic variation in physical 

parameters is calculated. Our results show that the sensor has 

less than 1.2% error in estimation of physical parameters in 

100% of injected variation cases. Based on published 

experimental data, the sensor estimation is shown to be accurate 

to within 2 % of the actual physical parameter value for a range 

of up to 7mm. 

Index Terms - Parameter Variation, Systematic Variation, 
On-chip Variation Sensor, NASIC, semiconductor nanowires, 
nanowire FETs 

I. INTRODUCTION 

E
merging nanoscale computing systems based on novel 
nanostructures such as nanowires [1], [2], carbon 

nanotubes [3], [4], memristors [5] etc. have been proposed 

with density and performance potentially exceeding the 

capabilities of scaled CMOS. However, reliable and 

deterministic manufacturing of such systems continues to be 
very challenging. Unconventional manufacturing approaches 
(e.g. imprint or self-assembly based) as well as 
photolithography at feature sizes of tens of nanometers and 

below introduce significant levels of variations in physical 

parameters. This could potentially lead to performance 

deterioration and/or yield loss in next-generation ICs. 
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Parameter variation is typically addressed pre-fabrication, 

with circuit design targeting various worst-case timing 

scenarios. However, this approach is inherently pessimistic 

and in nanoscale fabrics where the extent of variability can be 

high, optimizing for the worst-case would imply that much of 
the performance benefits can be lost. Alternatively, if 
variability could be estimated post-manufacturing, adaptive 
techniques (e.g. body-biasing [6]) could be used to adjust 

circuit timing and provide more optimal level of tolerance 

leading to area/performance benefits. In fabrics supporting 

reconfiguration, circuits can be re-mapped to meet 

system-level performance targets. 
In this paper we propose on-chip variability sensors for 

quantifying the extent and impact of systematic variations in 

physical parameters. We present a new resilience sensor 

design for the Nanoscale Application Specific Integrated 

Circuits (NASIC) fabric [7], [8], [9] that from its own 
variations, can estimate extent of variation in neighboring 
regions. This correspondence is possible because: 1) spatially 
correlated or 'systematic' behavior is well-known for several 

parameters (e.g. gate oxide [10], transistor channel and gate 
linewidths [11]); and 2) the uniform array-based organization 
of these fabrics with identical devices and no arbitrary sizing 
or doping that implies that sensor circuits designed using the 

same devices and circuit/logic styles can be representative of 

the fabric as a whole. This sensor design is also directly 
applicable to the Nanoscale 3-D Application Specific 

Integrated Circuits (N3 ASICs) fabric [12], [13] that uses 

similar circuit styles. 
We present the sensor design, and describe the theory for 

variability sensing. In this sensor, signal fall times are used to 
extract the extent of physical parameter variation for different 

spatially correlated parameters. We discuss a methodology 
for evaluating this sensor design using Monte Carlo 

simulations, and show that in 100% of simulated cases, the 
relative error between the injected and estimated extent of 
variation in physical parameters is less than 1.2%. 

An additional contribution of the paper is to address the 
aspect of sensor distribution across a wafer. We use analytical 

arguments to derive expressions for sensor range as a function 
of sensor accuracy, cross-chip variation gradient and 

permissible error. We use these expressions in conjunction 

with well-characterized experimental data to calculate 
maximum sensor range for different values of permissible 

error. Our results show that for the given data, our sensor 
design can estimate the extent of systematic variation in the 
gate oxide parameter to within 2% of its actual value inside a 

7mm radius. 
The rest of the paper is organized as follows: Section II 

overviews the NASIC fabric with emphasis on physical 



parameter variation; Section III presents the new resilience 

sensor design and discusses the theoretical framework for 
estimating extent of systematic variation in physical 
parameters; Section IV describes the Monte Carlo Simulation 

methodology for evaluating the sensor circuits; Results for 
sensor accuracy and sensor range are shown in Section V; and 

Section VI concludes the paper. 

II. NASICs OVERVIEW 

Nanoscale Application Specific Integrated Circuits 

(NASICs) is a nanoscale computing fabric based on regular 

grids of semiconductor nanowires with crossed nanowire 

field-effect transistors (xnwFETs) at certain crosspoints (Fig. 

1). In this fabric, design choices at all levels are targeted 
towards reducing manufacturing complexity. Devices and 

interconnects are assembled together on 2-D nanowire grids 

without the need for arbitrary and precise nanoscale 

interconnections. Dynamic circuit styles that do not require 
complementary devices or arbitrary placement/sizing are 

used for logic implementation. All devices on the grid are 

identical, with customization limited to determining the 

positions of crosspoint FETs. Peripheral microwires provide 

VDD, GND and reliable control signals for streaming. 
An end-to-end manufacturing pathway for NASICs has 

been described in [7], [14]. This pathway combines 

unconventional (e.g. self-assembly or nano-imprint 

lithography based) steps for assembly of nanostructures with 

conventional (e.g. deposition, etch) fabrication steps. 

Systematic variations can occur in both types of processes. 
For example, in Vapor-Liquid-Solid (VLS) growth [1][2], 

diameter of nanowires is strongly correlated to the size of the 
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Figure 1. Nanoscale Application Specific Integrated Circuits with regular 
semiconductor nanowire grids, xnwFET devices and peripheral 
microscale control a) 3-D fabric view b) circuit schematic 
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Figure 2. n-type xnwFET device structure with orthogonal gate and 
channel nanowires. 

eva inN in2 in, pre 

� .... � 
GND 

out 
VDD 

Figure 3. N-input NASIC dynamic NAND gate 
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Figure 4. a) Sensor dynamic circuit pair using N, N+ 1 fan-in NAND gates 
b) 4-pair Sensor circuit to determine variation in four systematic variation 
parameters 

seed catalyst used. This implies that at the circuit level, the 

channel diameter (Cdiam) of all FETs along a nanowire will be 
systematically affected. Atomic-Layer Deposition (ALD) is a 

process step commonly used for creating Hf02 gate dielectric 
that exhibits strong spatial correlation [10]. 

An n-type xnwFETs device is shown in Fig. 2. In this 
device, the current through the channel nanowire is 

modulated by the potential applied on the orthogonal gate. 

Sources of systematic variations in these xnwFET structures 

include channel and gate diameters (CdiwlH Gdiam - depend on 
VLS catalyst sizes) and gate oxide and bottom oxide 

thickness (Gox, Box). In this initial sensor design, only 

systematic effects are considered; random variations (e.g. 

underlap, doping levels) are assumed to have an averaging 
effect across our sensors and are ignored. 

Figure 3 shows an N-input dynamic NAND circuit, the 
building block of the NASIC fabric. In this circuit, the output 

is precharged to '1' using the pre signal, and then evaluated by 
asserting eva. The output will be discharged to '0' only if all N 

inputs are '1 " achieving NAND functionality. Multiple such 

dynamic gates are cascaded together to build computing 
systems. Sensor designs will have to follow the same circuit 

styles and fabric principles in order to accurately represent 
and capture variations in the NASIC fabric. 

III. ON-CHIP VARIATION SENSOR 

A key motivation for on-chip variation sensing is the 
capability to adjust circuit behavior post-manufacturing 

without pessimistic over-compensation at design time. While 

designing for the worst case could guarantee that there are no 
timing faults in the design, this approach would likely 

eliminate benefits of nanoscale fabrics. For example, 

previous circuit simulations of parameter variations in 

NASIC processor designs [15] have shown that while 
worst-case delays can be 2X - 2.5X of the nominal, this 

occurs in less than 1 % of simulated cases. Also, the 
distribution of delays is such that 85% of samples fall within 
30% deviation from the nominal frequency, which implies 

that most fabricated chips would not need worst-case 
resilience. 

If the extent of variation in fabricated chips can be 
estimated, body-biasing (to lower the threshold voltage), or 
reconfiguration schemes can be used to meet circuit timing 



requirements and retain performance benefits. Variation 

sensors can also be used for process feedback (e.g. to 

determine, based on device parameters, which process steps 
need to be more carefully controlled). 

In this section, we discuss a new on-chip sensor design for 

the NASIC fabric. The sensor can be used to calculate extent 
of systematic variation in physical parameters based on the 

measurement of fall time (1-to-O transitions) in dynamic 

NAND gates. 
Fig. 4A shows the new sensor circuit, which uses the same 

circuit styles as logic portions of the design. It consists of a 
pair of dynamic NAND gates with fan-in N and N+1. In 

principle, if the switching characteristics of a single device 

can be isolated, then information on the extent of variation in 
the device can be extracted using physics-based device 
models. 

The sensor operates as follows: Outputs are initially 

precharged by asserting the pre signal. During this time the 

input in1 is switched off ensuring that intermediate 

capacitances are not charged. All other inputs are asserted. 

Subsequently, in1 and eva signals are asserted, leading to 
1-to-0 transitions on both output nodes. 

The difference in the falling times of the two output signals 

in this sensor pair can be directly attributed to the behavior of 
the single 'additional' xnwFET if transient effects are near 

identical. This is made possible through careful sensor 
design. Firstly, the output load capacitance is made much 
larger than the device parasitics, eliminating their effect. 

Secondly, N must be large enough such that the net Vos drop 

across the N+ 1 FET in the second dynamic NAND gate is 

very small. Our simulations of NAND circuits employing 

accurate physics-based device models show that for N249, 

Vos drop is less than 0.02V. 
Ignoring transient effects, fall times are given by (1), (2). 

t/,ouu = K*(R; + R; +" .. ,,+ R� + R�+I + R�va) *CLoad (1) 

t(.OW_2 = K *(R1 + R2 +" .. ,,+ RN + Reva) *C Load (2) 

where K is the number of time constants to discharge the 
output and CLoad is the output loading capacitance. RJ ... RN+J 
are xnwFET resistances. Subtracting (1) - (2), we get 

t t -K*R' *C (3) /.ow_, - /,Ow_2 - N+' Load 
Next, RN+J can be expressed as a function of the individual 

variation parameters. Assuming independent variation in M 

different parameters (since each parameter is dependent on a 
separate process step), the resistance function can be 
decomposed into polynomial functions h;(x;) of the individual 
parameters Xi I, as shown in (4), 

t / ,0uU - t / ,Ow_ 2 . (4) 
* 

=RN+, =h,(x,)+h2(X2)+,,·+hM(XM) 
K CLoad 

The above equation establishes a single relationship 
between measurable fall times, and the extent of physical 

variation to be estimated. Considering different values of N 

and N+ 1, a linear system of equations can be established and 
solved for the individual parameters. For example, if there are 

I Interdependencies would introduce cross-terms that increase computational 
complexity, but the approach would still be applicable. 
2 Higher order polynomials would imply that the S matrix incorporates 
additional dimensions. 

4 systematic parameters being varied (M=4), then four 

different sensor pairs are used to establish 4 fall-time 

difference equations. Fig. 4B shows such a sensor, with 8 
dynamic NAND gates, and (N, N+1) pairs varying from (49, 

50) to (55, 56). 
For simplicity, the next set of equations consider first-order 

(linear) relationships for h;(x;) polynomials. Results for 1st, 

2nd and 3rd order polynomials will be discussed in the 

following sections. Equation (5) shows the matrix 
representation for the linear system of equations that needs to 
be solved: 

p = §-I *f 

kM_l.l kM_1.2 
kM.1 kM.2 

k1.M-1 
k,.M_I 

kM-I.M-1 kM_1.M 
kM,M_l kM,M 

g(""f.1) 
g(""f.2) 

(5) 

P is the vector representing extent of variation in individual 
parameters that needs to be determined, S lists the sensitivity 

coefficients 2 of each parameter, and T contains measured 

differences in fall-time. For M systematic vanatlOn 

parameters, M pairs of sensor circuits are needed to establish 
M different linear equations. By solving this system of 

equations, extent of variation in individual parameters is 
estimated. 

IV. METHODOLOGY FOR EVALUATION 

In this section, we describe a methodology for evaluating 

the accuracy of the sensor design based on Monte Carlo 

circuit simulations injecting known variation cases into the 

Monte Carlo sampling of physical 
parameter variation 

Sensitivity Coefficients (from 
device modeling) 

Sensor Circuit Nellist 

Measured fall-time difference 
in sensor pairs 

Estimated extent of variation 
in physical parameters; Error 

in estimation 

No Iterations 
L-_____________ --( Complete? 

Figure 5. Methodology for evaluating sensor designs based on Monte 
Carlo circuit simulations 



sensor design. 

xnwFET structures are extensively characterized through 

variation-aware accurate 3-D physics based simulations using 

Synopsys Sentaurus. Individual parameters considered 

include channel and gate diameters (CdiwIH Gdiom), and 

gate-oxide and bottom oxide thicknesses (Gox, Box). Device 

I-V and C-V characteristics were obtained for up to 3u=±30% 
variation in all parameters. The device characterization data 

was then used to build SPICE-compatible behavioral models 

using regression analysis. These behavioral models represent 

the xnwFET resistance as a function of gate-source voltage, 

drain-source voltage and extent of variation in physical 

parameters. 

An initial circuit simulation step is used to populate the 

sensitivity matrix S. Circuit simulations are carried out for the 

sensor in Fig. 4B with parameters varied one at a time. 

Sensitivity coefficients for all parameters are calculated from 

the measured fall-times. 

To test if the sensor design provides accurate estimates of 

physical parameter variation, a Monte Carlo based simulation 

framework (Fig. 5) is used. HSPICE circuit simulations are 

carried out with known variation cases injected into the 

sensor. These simulations assume Gaussian Distributions of 

individual device parameters with u=lO%. Based on the 

measured fall time, the extent of variation in physical 

parameters is estimated using the theoretical framework 

described in the previous section. The relative error in 

estimation vs. injected variation in physical parameters can 

then be determined. 

V. RESULTS 

A. Sensor Accuracy 

Circuit simulations were carried out to determine the 

accuracy of the sensor design in estimating extent of variation 

in physical parameters. The metric used is the Estimation 

Error (eJ for parameter Xi, defined as: 

ej =100* I (x; -xO l lx/ (6) 

Here, x/ is the injected value of parameter Xi, x/ is the value 

of the parameter estimated by the sensor. The maximum 

estimation error (MEE) across all M parameters for each 

Monte Carlo case is then defined as: 
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Figure 6. CDF function of Maximum Estimated Error across 100 Monte 
Carlo Simulations 

eMAX =MAX(e"e2,",eM) (7) 

An example is shown in Table I. In Case 1, the Cdiom 
parameter has the maximum estimation error of 0.212%. In 

Case 2, the maximum estimation error is for the Box parameter 

(0.695%). 
TABLE I 

EXAMPLES OF VARIATION CASES AND MEE CALCULATION 
Injected 

Cdiam, Gox, Estimated Variation 
BoX) G'iiam Variation (normalized) MEE 

(-0.10, 0.06, 0.09, (-0.11, 0.06, 0.09, 
0.2l2%(Cdiam) 

Casel 0.08) 0.09) 

(0.11, -0.16, (0.10, -0.17, 
0.695% (Box) 

Case2 -0.07, 0.03) -0.06, 0.03) 

Fig. 6 shows the Cumulative Distribution Function for the 

MEE across 100 Monte Carlo simulations. The graphs 

consider first, second and third-order polynomial 

relationships between individual parameters and the 

measured fall times. From these results, the MEE is smallest 

when considering third-order polynomial relationships, with 

less than 1 % MEE for 90% of simulations, and less than 1.2% 
MEE for all cases considered. Even with linear 

approximations, the MEE is within 1.4% for 100% of samples 

considers. This implies that sensor design and methodology 

provides an accurate estimation of extent of variation in 

individual parameters. An important caveat is the requirement 

for populating the sensitivity matrix from accurate models 

based on extensive experimental characterizations. 

B. Sensor Range 

The problem of sensor range seeks to address optimal 

placement of sensors on a wafer given a model for 

cross-wafer trends in systematic variation. For example, 

initial wafer lots could have a high density of sensors and as 

processes become more tightly controlled and extent/trends in 

variation better quantified, it may be possible to avchieve a 

more optimal placement of sensors. 

Consider two locations A and B on a wafer separated by a 

distance D (Fig. 7). A sensor placed at A is able to determine 

the extent of systematic variation at position A to within eMAX, 

A B 
�.---------D---------.. 

Position 
Figure 7. Schematic for determining sensor range as a function of sensor 
accuracy, variation gradient, and permissible estimation error. 



the sensor accuracy. Now, considering a suitable model for 

the trend in systematic variation from location A to B, we 

wish to estimate the error in the sensor estimation with 

respect to the actual extent of systematic variation at location 

B. Conversely, the sensor range D for which the sensor 

accuracy is below a pre-defined permissible estimation error 

can be estimated. This is demonstrated below: 

Considering error in estimation at point A, 

I (x� -x�)l/x� �eA (8) 

where for simplicity the metric MEE has been replaced by 

estimation error at point A, 'eA'. x/ represents the sensor 

estimation value, x/ represents the unknown actual variation 

at point A. Two cases are possible depending on whether the 

sensor overestimates or underestimates the value of XA a; 
(9) 

or x� � x� 1(l+eA) (10) 

Consider a linear trend in systematic variation from point A 

to B with slope m, 
x� =mD+x� (11) 

Now, based on the 2 cases outlined above, and given a 

maximum allowed imprecision eB at point B, 

(12) 

or x�=x�/(l+eB) (13) 

Solving the inequalities (9) - (13) for the two cases, we get 

D = (x: Im)*{(eB -eA)/[(l -eB)*(l -eA)]} (14) 

or D = (x� I lml)* { (ell -eA)/[(l +ell)* (l + eA)]} (15) 

Now, given that the information on whether the sensor 

overestimated or underestimated the actual value of the 

parameter is unknown, the smaller of the two D values (Eqn. 

15) needs to be selected. 

The following insights can be derived from this 

relationship: 1) Sensor Accuracy: sensor range increases with 

increased accuracy, reduced eA, 2) Permissible estimation 
error: range increases with increase in eB, larger estimation 
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Figure 8. Hf02 gate oxide thickness distribution across 100mm wafer 
for optimized ALD process from experimental data [10]. Values in 
brackets represent thickness in nanometers. Red shaded region 
represents locus of points for which sensor estimation error :os en. 

error is permissible, 3) Slope: If there is a larger gradient in 

systematic variation, sensors need to be placed closer 

together, and 4) Parameter Value: A larger value for a 

physical parameter means a smaller relative estimation error, 

which implies that sensors can be spaced farther apart. 

A key challenge in determining sensor distribution is that 

the distance D depends on the estimated parameter value and 

the slope, values that may only be available 

post-manufacturing. In nanoscale fabrics supporting 

reconfiguration, it may be possible to progressively design 

sensors based on estimated values, since the sensor logic and 

circuit style are identical to other functional blocks in the 

design. Otherwise, estimations based on previous 

experimental characterizations need to be used to determine 

sensor spacing pre-manufacturing. An example is described 

below. 

In [10], an optimized ALD deposition process was shown 

with high degree of uniformity for Hf02 gate oxide. Fig. 8 

shows a schematic representation of cross-wafer ALD gate 

oxide thickness distribution that was characterized [10] for a 

100mm wafer. The smallest possible value for xe in this case 

is (l-eMAX)* Xmina. From characterization data, Xmina = 50nm at 

point 0, eA = 1.2% (sensor accuracy), and maximum slope 

m=1.4nmI25mm (corresponding to segment AC). The shaded 

circular region represents the locus of points B for which the 

estimation error is less than or equal to eB' Table II shows the 

sensor range for the above parameter and varying values of 

eB' The results show that for an estimation error between 

2%-4%, the sensor range varies from 7mm to 24mm. The 

relatively high sensor range is primarily due to the high 

degree of uniformity of the fabrication process, which implies 

that the magnitude of slope m is very small. As expected, 

sensor range increases if more imprecision can be tolerated. 

TABLE II 
SENSOR RANGE vs. PERMISSIBLE ESTIMATION ERROR (en) 

Sensor Range (D), in mm 
2% 7 

2.5% 11.3 
3% 15.6 

3.5% 19.8 
4% 24 

VI. CONCLUSIONS 

A new on-chip variation sensor for the NASIC nano-fabric 

was shown. A methodology for extracting the extent of 

systematic variation in physical parameters from measured 

sensor fall-times was presented. Using accurate 
physics-based device models and Monte Carlo simulations, 
sensor accuracy was quantified. Results show less than 1.2% 
error in estimation of physical parameters for 100% of the 

samples considered. Analytical expressions for sensor range 

as a function of sensor accuracy, gradient in systematic 

parameter variation and permissible estimation error were 
derived. From experimental characterization data for an 

optimized Hf02 ALD process, the sensor range was shown to 
be up to 7mm considering a permissible estimation error of 

2% in gate oxide thickness. On-chip variation sensors could 



be used in conjunction with adaptive body-bias, 
reconfiguration or other post-fabrication techniques to 

ameliorate the impact of parameter variation and improve 
system-level performance for nanoscale computing fabrics. 
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