Cognitive Computing

Reconfigurable Probabilistic AI Architecture for Personalized Cancer Treatment

The machinery of life operates on the complex interactions between genes and proteins. Attempts to capture these interactions have culminated into the study of Genetic Networks. Genetic defects lead to erroneous interactions, which in turn lead to diseases. For personalized treatment of these diseases, a careful analysis of Genetic Networks and a patient’s genetic data is required. In this work, we co-design a novel probabilistic AI model along with a reconfigurable architecture to enable personalized treatment for cancer patients.

AttachmentSize
PDF icon PDF4.86 MB

SkyNet: Memristor-based 3D IC for Artificial Neural Networks

Hardware implementations of artificial neural networks (ANNs) have become feasible due to the advent of persistent 2-terminal devices such as memristor, phase change memory, MTJs, etc. Hybrid memristor crossbar/CMOS systems have been studied extensively and demonstrated experimentally. In these circuits, memristors located at each cross point in a crossbar are, however, stacked on top of CMOS circuits using back end of line processing (BOEL), limiting scaling.

AttachmentSize
PDF icon PDF1.33 MB

Structure Discovery for Gene Expression Networks with Emerging Stochastic Hardware

Gene Expression Networks (GENs) attempt to model how genetic information stored in the DNA (Genotype) results in the synthesis of proteins, and consequently, the physical traits of an organism (Phenotype). Deciphering GENs plays an important role in a wide range of applications from genetic studies of the origins of life to personalized healthcare. Probabilistic graphical models such as Bayesian Networks (BNs) are used to perform learning and inference of GENs from genetic data.

AttachmentSize
PDF icon PDF534.29 KB

Magneto-electric Approximate Computational Circuits for Bayesian Inference

Probabilistic graphical models like Bayesian Networks (BNs) are powerful cognitive-computing formalisms, with many similarities to human cognition. These models have a multitude of real-world applications. New emerging-technology based circuit paradigms leveraging physical equivalence e.g., operating directly on probabilities vs. introducing layers of abstraction, have shown promise in raising the performance and overall efficiency of BNs, enabling networks with millions of random variables.

AttachmentSize
PDF icon PDF986.8 KB

Self-similar Magneto-electric Nanocircuit Technology for Probabilistic Inference Engines

Probabilistic graphical models are powerful mathematical formalisms for machine learning and reasoning under uncertainty that are widely used for cognitive computing. However they cannot be employed efficiently for large problems (with variables in the order of 100K or larger) on conventional systems, due to inefficiencies resulting from layers of abstraction and separation of logic and memory in CMOS implementations. In this paper, we present a magneto-electric probabilistic technology framework for implementing probabilistic reasoning functions.

AttachmentSize
PDF icon PDF4.12 MB
Subscribe to RSS - Cognitive Computing