NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Wednesday, January 23, 2008

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers clearly in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$

1. Let X be an arbitrary nonempty set, A an algebra of subsets of X, A_{σ} the class of all countable unions of sets in A, and μ a premeasure on A. For any subset E of X, define

$$\mu^*(E) = \inf\left\{\sum_{j=1}^{\infty} \mu(A_j) : A_j \in \mathcal{A} \text{ and } E \subset \bigcup_{j=1}^{\infty} A_j\right\}.$$

Also define \mathcal{M}^* to be the class of subsets E of X satisfying

 $\mu^*(G) = \mu^*(G \cap E) + \mu^*(G \cap E^c) \text{ for all } G \subset X.$

According to Carathéodory's Theorem, \mathcal{M}^* is a σ -algebra containing the algebra \mathcal{A} , and μ^* is a measure on \mathcal{M}^* that equals μ on \mathcal{A} .

(a) Let E be a set in \mathcal{M}^* satisfying $\mu^*(E) < \infty$. Prove that for any $\varepsilon > 0$ there exists a set $A \in \mathcal{A}_{\sigma}$ such that $E \subset A$ and $\mu^*(A \setminus E) < \varepsilon/2$.

(b) Let E be a set in \mathcal{M}^* satisfying $\mu^*(E) < \infty$. Prove that for any $\varepsilon > 0$ there exists a set $B \in \mathcal{A}$ such that $\mu^*(B \triangle E) < \varepsilon$. Recall that $B \triangle E = (B \setminus E) \cup (E \setminus B)$.

2. Let (X, \mathcal{M}, μ) be a measure space.

(a) Let f be a nonnegative, μ -integrable function mapping X into $[0, \infty)$. Prove that for any $\varepsilon > 0$ there exists $\delta > 0$ such that $\int_E f d\mu < \varepsilon$ for any set $E \in \mathcal{M}$ satisfying $\mu(E) < \delta$. (Hint. Approximate f by a suitable bounded function.)

(b) Assume that the measure μ on (X, \mathcal{M}) is σ -finite. Let ν be a finite measure on (X, \mathcal{M}) . Prove that $\nu \ll \mu$ is equivalent to the following: for any $\varepsilon > 0$ there exists $\delta > 0$ such that $\nu(E) < \varepsilon$ for any set $E \in \mathcal{M}$ satisfying $\mu(E) < \delta$. (**Hint.** Use part (a) to prove one o

For $n \in \mathbb{N}$ consider the partition $t_0 < t_1 < \ldots < t_{2^n-1}$ of the interval [0,1) with $t_j = j/2^n$. Define the functions

$$r_n(t) = (-1)^j$$
 if $j/2^n \le t < (j+1)/2^n, j = 0, 1, \dots, 2^n - 1.$

Prove that if $f \in L^1([0, 1), m)$, then

$$\lim_{n \to \infty} \int_{[0,1)} f(t) r_n(t) \, dt = 0.$$

(**Hint.** First consider $f = 1_{[a,b]}$ for $[a,b] \subset [0,1)$.)

3. For $n \in \mathbb{N}$ consider the partition $t_0 < t_1 < \ldots < t_{2^n-1}$ of the interval [0,1) with $t_j = j/2^n$. Define the functions

$$r_n(t) = (-1)^j$$
 if $j/2^n \le t < (j+1)/2^n, j = 0, 1, \dots, 2^n - 1.$

Prove that if $f \in L^1([0,1),m)$, then

$$\lim_{n \to \infty} \int_{[0,1)} f(t) r_n(t) \, dt = 0.$$

(**Hint.** First consider $f = 1_{[a,b]}$ for $[a,b] \subset [0,1)$.)

4. For t > 0 and x > 0 define

$$f(x,t) = \frac{e^{-x} - e^{-xt}}{x}$$
 and $F(t) = \int_0^\infty f(x,t) \, dx$.

Prove that for all t > 0, $F(t) = \log(t)$. (Hint. Consider dF/dt.)

5. For each j = 1, 2, let (X_j, \mathcal{M}_j) be a measurable space and let μ_j and ν_j be σ -finite measures on (X_j, \mathcal{M}_j) such that $\nu_j \ll \mu_j$.

(a) For $E \in \mathcal{M}_1 \otimes \mathcal{M}_2$ define

$$\alpha(E) = \int_E \left(\frac{d\nu_1}{d\mu_1}(x_1) \cdot \frac{d\nu_2}{d\mu_2}(x_2) \right) d(\mu_1 \times \mu_2)(x_1, x_2).$$

Prove that α is a measure on $\mathcal{M}_1 \otimes \mathcal{M}_2$ and that $\alpha = \mu_1 \times \mu_2$.

(b) Prove that $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ and that

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \nu_1)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1) \cdot \frac{d\nu_2}{d\mu_2}(x_2).$$

- 6. Let (X, \mathcal{M}, μ) be a measure space. Let f be a measurable function mapping X into \mathbb{R} and let $\{f_n, n \in \mathbb{N}\}$ be a sequence of measurable functions mapping X into \mathbb{R} .
 - (a) Assume that for all $\delta > 0$

$$\sum_{n=1}^{\infty} \mu(\{x \in X : |f_n(x) - f(x)| > \delta\}) < \infty.$$

Prove that $f_n \to f$ a.e. (Hint. Let $A = \{x \in X : f_n(x) \to f(x)\}$ and find an appropriate upper bound for $\mu(A^c)$.)

(b) Assume that $f_n \to f$ in measure. Prove that there exists a subsequence f_{n_j} that converges to f a.e. (**Hint.** Use part (a).)

7. Consider the map T on $L^{1}([0,1],m)$ defined by $Tf(x) = \int_{0}^{x} f(t) dt$ for $f \in L^{1}([0,1],m)$ and $x \in [0,1]$.

a) Prove that for any $n \in \mathbb{N}$

$$T^{n}f(x) = \int_{0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt.$$

(b) Prove that T maps $L^1([0,1])$ into $L^1([0,1])$ and is a bounded, linear operator. Recall that $||T|| = \sup\{||Tf|| : f \in L^1([0,1]), ||f|| = 1\}$, where $|| \cdot ||$ denotes the norm on $L^1([0,1])$. (c) Prove that $||T^n|| \le 1/n!$. 8. Let $\mathcal{H} = L^2([-1,1])$, which denotes the real Hilbert space consisting of all square integrable functions mapping X into \mathbb{R} and equipped with the usual inner product and norm.

(a) Use the Gram-Schmidt process to find an orthonormal sequence $\{\varphi_0, \varphi_1, \varphi_2\}$ in \mathcal{H} whose linear span equals the linear span of $\{1, x, x^2\}$.

(b) By using an appropriate theorem or appropriate theorems about Hilbert spaces, determine

$$\min_{a \in \mathbb{R}, b \in \mathbb{R}} \int_{-1}^{1} |x^2 - a - bx|^2 \, dx.$$

Indicate what theorem(s) about Hilbert space you are using in your answer.

(c) By using an appropriate theorem or appropriate theorems about Hilbert spaces, determine

$$\max \int_{-1}^{1} x^2 f(x) \, dx.$$

where f is subject to the restrictions

$$\int_{-1}^{1} f(x) \, dx = 0, \ \int_{-1}^{1} x f(x) \, dx = 0, \ \int_{-1}^{1} |f(x)|^2 \, dx = 1.$$

Indicate what theorem(s) about Hilbert space you are using in your answer. (Hint. Define \mathcal{M} to be the linear span of $\{\varphi_0, \varphi_1, \varphi_2\}$. Write f = g + h, where g is the orthogonal projection of f onto \mathcal{M} and h is the orthogonal projection of f onto \mathcal{M}^{\perp} .)