COMPLEX ANALYSIS BASIC EXAM UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS AUGUST 2016

- Each problem is worth 10 points.
- Passing Standard: Do 8 of the following 10 problems, and
 - Master's level: 45 points with three questions essentially complete
 - Ph. D. level: 55 points with four questions essentially complete
- Justify your reasoning!
- 1. Show that the function $\exp(-z^2)$ has a primitive on **C**. You do **not** have to find the actual primitive.
- 2. Show that

$$\int_{-\infty}^{\infty} \left(\frac{\sin x}{x}\right)^3 dx = \frac{3\pi}{4}.$$

Show the contour and prove all estimates you use. *Hint:* Consider the function $\frac{-2 + 3e^{iz} - e^{3iz}}{z^3}$.

3. Let f be an analytic function on the open unit disk $D := \{z : |z| < 1\}$, such that |f(z)| < 1 for all $z \in D$ and that f(0) = 0. Show that for any fixed 0 < r < 1, the series

$$\sum_{n=0}^{\infty} f(z^n)$$

converges uniformly for $|z| \leq r$.

4. (a) [5 points] Determine the type of every isolated singularity (including possibly at infinity) of the function

$$\frac{e^z}{1+z^2}.$$

Show your work.

(b) [5 points] Find the Laurent series of

$$\frac{1}{(1+z^2)(2+z^2)}$$

for $1 < |z| < \sqrt{2}$. Show your work.

5. (a) [5 points] Determine all conformal maps ϕ from the open unit disk to itself, such that $\phi(0)$ lies on the real axis and that the arc on the unit circle with angle $0 \le \theta \le \pi/2$ is taken to the arc with angle $\pi/2 \le \theta \le 7\pi/6$. Show your work.

- (b) [5 points] Determine the fractional linear transformation φ that takes the points -1, 0, 1 respectively to the points 1, i, -1, and determine the image under φ of the upper half plane. Show your work.
- 6. (a) [5 points] Construct a holomorphic function on **C** with real part $e^{-x}(x \sin y y \cos y)$. Show your work.
- (b) [5 points] Let u(x,y) be a real-valued harmonic function on \mathbf{R}^2 such that $u(x,y)^2$ is also harmonic. Show that u is constant.
- 7. Let U be an open subset of the complex plane. Suppose that $\{f_n\}$ is a sequence of analytic functions defined on U and converges uniformly on compact subsets of U to an analytic function f. Show that $\{f'_n\}$ converges uniformly on compact subsets of U to f'.
- 8. Let $P_n(z) = \sum_{k=0}^n z^k/k!$. Given R, prove that P_n has no zeros in the disk of radius R for all n sufficiently large.
- 9. Let C be the circle $\{z: |z|=2\}$ traversed counter-clockwise. Compute $\int_C \frac{z^{2n}\cos(1/z)}{1-z^n}dz$ for all integers $n \geq 2$. Show your work.
- 10. Let f(z) be an entire function and suppose that $|f(z)| \le |\sin^3(z)|$ for all $z \in \mathbb{C}$. Prove that $f(z) = \lambda \sin^3(z)$ for some $\lambda \in \mathbb{C}$.