DEPARTMENT OF MATHEMATICS AND STATISTICS UMASS - AMHERST BASIC EXAM - PROBABILITY FALL 2010

Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D. level. Each question is worth 20 points.

- 1. Suppose you are told to toss a die until you have observed each of the six faces.
 - (a) Let Y_1 be the trial on which the first face is tossed, Y_2 be the number of additional tosses required to get a face different than the first, Y_3 be the number of additional tosses required to get a face different than the first two distinct faces, ..., and Y_6 be the number of additional tosses required to get the last remaining face after all other faces have been observed. Find the distribution of each Y_i , $i = 1, \dots, 6$.
 - (b) What is the expected number of tosses required in order to observe each of the six faces?
- 2. (a) Suppose $X \sim N(0, 1)$. Find the p.d.f. of $Y = X^2$.
 - (b) Let X_1 and X_2 be two independent random variables; X_1 has an exponential distribution with mean 1, and X_2 has an exponential distribution with mean 2. Find the p.d.f. of $Y = 2X_1 + X_2$.
 - (c) Let X_1 and X_2 be two independent exponentially distributed random variables, each with mean 1. Find $P(X_1 > X_2 | X_1 < 2X_2)$.
- 3. Let Z be a standard normal random variable and let $Y_1 = Z$ and $Y_2 = Z^2$.
 - (a) Find $E(Y_1)$, $E(Y_2)$, and $E(Y_1Y_2)$.
 - (b) Find $Cov(Y_1, Y_2)$. Are Y_1 and Y_2 independent?
- 4. Suppose that X_1, \dots, X_k are iid $N(\mu, \sigma^2), k \ge 2$. Denote:

$$U_1 = \sum_{i=1}^k X_i, U_j = X_1 - X_j \text{ for } j = 2, \cdots, k$$

- (a) Show that $\mathbf{U} = (U_1, \dots, U_k)$ has a k-dimensional normal distribution;
- (b) Show that U_1 and (U_2, \dots, U_k) are independent;
- (c) Express S^2 as a function of U_2, \dots, U_k alone. Hence, show that \bar{X} and S^2 are independently distributed. (*Hint: You may use the fact that* $\begin{pmatrix} k \\ 2 \end{pmatrix} S^2 = \sum_{1 \le i < j \le k} \frac{1}{2} (X_i X_j)^2$).

5. (a) Let $\{\xi_n, n \ge 1\}$ be a sequence of independently identically distributed random variables with $E(\xi_1) = \mu$, $Var(\xi_1) = \sigma^2 < \infty$, and $P(\xi_1 = 0) = 0$. Prove that

$$\frac{\xi_1 + \xi_2 + \dots + \xi_n}{\xi_1^2 + \xi_2^2 + \dots + \xi_n^2} \to \frac{\mu}{\mu^2 + \sigma^2}, \quad n \to \infty,$$

in probability. (Hint: you may use the theorem that says if X_n converges to X in probability and Y_n converges to Y in probability, and if f is continuous, then $f(X_n, Y_n)$ converges to f(X, Y) in probability. If further X = a and Y = b are constants, then f only needs to be continuous at (a, b).).

(b) Let

$$X_n = \begin{cases} n & \text{with probability } 1/n \\ 0 & \text{with probability } 1 - 1/n. \end{cases}$$

Show that X_n converges in probability to zero, but $E(X_n)$ and $Var(X_n)$ do not converge to zero.