Analysis Qualifying Examination

Department of Mathematics and Statistics
University of Massachusetts

August 2022

This exam consists of eight equally weighted problems (ten points each): a passing grade is 65% (52/80), including at least five “essentially correct” problems ($\approx 7.5/10$).

Clearly show your work, explicitly stating or naming results that you use; justify use of named theorems by verifying necessary conditions.

Please work legibly and clearly label each page/file of your exam with your name.

Unless otherwise stated, the measure in every problem is the Lebesgue measure. Unless otherwise specified, the underlying space is \mathbb{R}^d.
1. Let f be a non-negative, Lebesgue integrable function on \mathbb{R}. Denote by $\mathcal{B}(\mathbb{R})$ the Borel σ-algebra of \mathbb{R} and by m the Lebesgue measure on \mathbb{R}. For $A \in \mathcal{B}(\mathbb{R})$ define

$$
\mu(A) = \int_A f \, dm.
$$

(a) Prove that μ is a measure and explain why it is finite.

(b) Prove that for any $\epsilon > 0$ there exists $\delta > 0$ such that for every $E \in \mathcal{B}(\mathbb{R})$ satisfying $m(E) < \delta$ we have

$$
\int_E f \, dm < \epsilon.
$$
2. Let \(X \) be a Banach space with norm \(\| \cdot \| \) and let \(L(X, X) \) be the space of all bounded, linear operators mapping \(X \) into \(X \).

(a) For \(U \in L(X, X) \) give the definition of \(\| U \| \) (the operator norm).

(b) Assume that \(U \in L(X, X) \) satisfied \(\| I - U \| < 1 \), where \(I \) is the identity operator. Prove that \(U \) is invertible and that \(\sum_{n=0}^{\infty} (I - U)^n \) converges in \(L(X, X) \) to \(U^{-1} \).

(c) Assume that \(U \in L(X, X) \) is invertible and that \(W \in L(X, X) \) satisfies \(\| W - U \| < \| U^{-1} \|^{-1} \). Prove that \(W \) is invertible.
3. Let P be the orthogonal projection associated with a closed subspace S in a Hilbert space H, that is,

$$P(f) = f \quad \text{if } f \in S \quad \text{and} \quad P(f) = 0 \quad \text{if } f \in S^\perp.$$

(a) Prove that $P^2 = P$ and $P^* = P$.

(b) Conversely, if Q is any bounded operator on H satisfying $Q^2 = Q$ and $Q^* = Q$, prove that Q is the orthogonal projection for some closed subspace of H.

(c) Give an example (you can choose H) where $Q^2 = Q$, $Q^* \neq Q$, and Q is not an orthogonal projection.
4. Let \(X = [0, 1] \) endowed with the Lebesgue measure and let \(f(x, y) = \frac{x^2 - y^2}{(x^2 + y^2)^2} \) if \((x, y) \neq (0, 0)\) and \(f(0, 0) = 0 \).

(a) Use the trigonometric substitution \(x = \tan \theta \) to prove that

\[
\int \frac{x^2 - a^2}{(x^2 + a^2)^2} dx = -\frac{x}{x^2 + a^2}.
\]

Hint: Recall the identities \(\sin^2 \theta = \frac{1}{2}(1 - \cos(2\theta)) \), \(\cos^2 \theta = \frac{1}{2}(1 + \cos(2\theta)) \), and \(\sin(2\theta) = 2\sin \theta \cos \theta \).

(b) Use part (a) to compute the integrals

\[
\int_0^1 \left(\int_0^1 f(x, y) dm(x) \right) dm(y) \quad \text{and} \quad \int_0^1 \left(\int_0^1 f(x, y) dm(y) \right) dm(x),
\]

and show that they are not equal.

(c) In the example of (b) which hypotheses of the Fubini-Tonelli Theorem are violated?
5. Let \((X, M, \mu)\) be a measure space. Let \(\{f_n, n \in \mathbb{N}\}\) be a sequence of integrable functions that converges in measure to another integrable function \(f \in L^1(\mu)\). Define \(g(x) = \sup_{n \in \mathbb{N}} |f_n(x)|\) for \(x \in X\) and assume that \(g\) is integrable. Recall that \(f_n\) is said to converge to \(f\) in measure if for every \(\epsilon > 0\) we have \(\lim_{n \to \infty} \mu(\{|f_n - f| \geq \epsilon\}) = 0\). (You may use the fact that this implies the existence of a subsequence that converges a.e. to \(f\).)

(a) Prove that \(\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu\). Hint: Consider \(g \pm f_n\) and Fatou (justify use of Fatou carefully).

(b) Prove that \(f_n\) converges to \(f\) in \(L^1\).
6. In this problem k denotes a fixed integer strictly larger than $\frac{d}{2}$ and \mathcal{S} denotes the space of Schwartz functions.

(a) Prove that there is a constant $C > 0$ such that for all $f \in \mathcal{S}$

$$\|f\|_{L^\infty} \leq C \sum_{|\alpha| \leq k} \|\partial^\alpha f\|_{L^2}.$$

Hint: Use the Fourier transform.

(b) Prove that there is a constant $C > 0$ such that for all $f \in \mathcal{S}$

$$\|f\|_{L^\infty} \leq C \|f\|_{L^2}^{\frac{2k-d}{2k}} \left(\sum_{|\alpha| = k} \|\partial^\alpha f\|_{L^2} \right)^{\frac{d}{2k}}.$$

Hint: Use part (a) and a scaling argument.
7. Give examples, with full justification, of sequences of functions (for your choice of measure space in each case) such that

(a) $f_n \to f$ uniformly, but f_n does not converge to f in L^1 (with f_n and f integrable).

(b) $f_n \to f$ a.e., but f_n does not converge to f in measure. Recall: we say that f_n converges to f in measure if for all $\epsilon > 0$, $\mu(\{|f_n - f| \geq \epsilon\}) \to 0$ as $n \to \infty$.

(c) $f_n \to f$ in L^1, but $f_n(x)$ does not converge to $f(x)$ for any x. Hint: Consider $f_n = \chi_{I_n}$ to be the characteristic functions of appropriate intervals $I_n \subset \mathbb{R}$.

(d) $f_n \to f$ in measure, but f_n does not converge to f in L^1 (with f_n and f integrable).

(e) $f_n \to f$ weakly in L^2 but not in L^2. Recall that f_n is said to converge to f weakly in L^2 if $\int f_n g \to \int f g$ as $n \to \infty$ for all $g \in L^2$.

8. (a) If \(f : [0, 1] \rightarrow \mathbb{R} \) is bounded and increasing, prove that it is of bounded variation.

(b) Prove that \(f(x) : [0, 1] \rightarrow \mathbb{R} \) defined by \(f(x) = x \sin(x^{-1}) \) for \(x \neq 0 \) and \(f(0) = 0 \), is not of bounded variation.

(c) More generally, if \(a, b > 0 \), let

\[
 f(x) = \begin{cases}
 x^a \sin(x^{-b}) & \text{for } 0 < x \leq 1, \\
 0 & \text{if } x = 0.
\end{cases}
\]

Prove that \(f \) is of bounded variation on \([0, 1]\) if and only if \(a > b \). Hint: one approach is to find the maxima and minima of \(f \) and directly use the definition by refining a given partition.