DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST

ADVANCED EXAM - ALGEBRA

AUGUST 2006 ?????

Passing Standard: It is sufficient to do FIVE problems correctly, including at least ONE FROM EACH of the THREE parts.

Part I.

1. For any prime p, show that a finite Abelian p-group is generated by its elements of highest order.
2. (a) Show that if H is a normal subgroup of the finite group G, and if a prime p does not divide $[G: H$], then H contains every Sylow p-subgroup of G.
(b) Give a counterexample when H is not normal. Justify your answer.
3. Let p be a prime. For any integer $n>0$, denote by $\mathbf{F}_{p^{n}}$ the finite field with p^{n} elements. The Frobenius automorphism

$$
\mathrm{Fr}_{p^{n}}: \mathbf{F}_{p^{n}} \rightarrow \mathbf{F}_{p^{n}}
$$

is a bijective map from $\mathbf{F}_{p^{n}}$ to itself, and hence can be viewed as an element of the symmetric group $S_{p^{n}}$. In particular, it makes sense to ask if $\mathrm{Fr}_{p^{n}}$ belongs to the alternating group $A_{p^{n}}$ or not.
(a) If n is odd, show that $\operatorname{Fr}_{p^{n}} \in A_{p^{n}}$. (Hint: consider the orbits of the $\operatorname{Fr}_{p^{n}}$-action on $\mathbf{F}_{p^{n}}$)
(b) If the prime p is odd, show that $\mathrm{Fr}_{p^{2}} \in A_{p^{2}}$ if and only if $p \equiv 1(\bmod 4)$.
(c) If the prime p is odd, determine whether or not $\mathrm{Fr}_{p^{4}}$ is in $A_{p^{4}}$.

Part II.

1. Show that an integral domain is a UFD if and only if both of the following conditions hold:

- every ascending chain of principal ideals terminates, and
- every irreducible element is prime.

2. Consider the following matrix over a field F :

$$
A=\left(\begin{array}{rrrrrr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Turn the F-vector space $M:=V^{6}$ into a finitely generated $F[x]$-module in the usual way: for any $f(x) \in F[x]$ and any $v \in M$, set $f \cdot v$ to be the matrix $f(A)$ times the column vector v. With respect to this action, $N:=\operatorname{ker} A$ is a $F[x]$-submodule of M.
(a) Decompose M into a direct sum of simple $F[x]$-modules.
(b) Do the same for $M \otimes_{F[x]} N$.
3. Determine the Jordan form of all nilpotent 6×6 matrices over the finite field \mathbf{F}_{3}. Justify your answer.

Part III.

1. Let L / K be a finite Galois extension. For any prime divisor p of $[L: K]$, show that there exists a subfield F of L such that $[L: F]=p$ and $L=F(\alpha)$ for some $\alpha \in L$.
2. Consider the extension $F=\mathbf{C}\left(t^{4}\right)$ over $L=\mathbf{C}(t)$, where t is a variable.
(a) Show that L is the splitting field of $x^{4}-t^{4}$ over F.
(b) Show that $x^{4}-t^{4}$ is irreducible over F.
(c) Determine $\operatorname{Gal}(L / F)$.
3. (a) Let $q>2$ be a prime. For any distinct integers u, v, show that at least one of u, v or $u v$ is a square modulo q.
(b) Let $f(x) \in \mathbf{Z}[x]$ be a quartic polynomial with Galois group $\mathbf{Z} / 2 \times \mathbf{Z} / 2$. Show that $f(x)$ is reducible modulo every prime >3.
