Department of Mathematics and Statistics

University of Massachusetts

Basic Exam: Linear Algebra/Advanced Calculus August 25, 2003

Do 7 of the following 9 problems. Indicate clearly which problems should be graded.

Passing Standard: For Master's level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. level, 75% with two questions from each part essentially complete.

Part I Linear Algebra

- 1. Let A be an $m \times n$ matrix over \mathbb{R} . If $A^t A x = 0$ for some $x \in \mathbb{R}^n$, show that Ax = 0. Use this to show that if the columns of A are linearly independent, then $A^t A$ is invertible. [Hint: Consider $\langle Ax, Ax \rangle$ where $\langle x, y \rangle$ is the usual inner product.]
- 2. Let $T: V \to V$ be a linear operator on a finite dimensional vector space. Prove that there is an integer m for which $(\operatorname{Ker} T^m) \cap (\operatorname{Im} T^m) = 0$.
- 3. Suppose a and b are nonzero real numbers. Consider the matrix

$$A = \begin{pmatrix} 1 & a & b \\ a & a^2 & ab \\ b & ab & b^2 \end{pmatrix}.$$

- (a) Determine the nullity of A (the dimension of Ker A).
- (b) Find two orthogonal eigenvectors for A.
- (c) Must \mathbb{R}^3 have an orthogonal basis consisting of eigenvectors for A?
- 4. Let $T: V \to V$ be a linear operator on a finite dimensional vector space, with characteristic polynomial f(x).
 - (a) Suppose T has two linearly independent eigenvectors with the same eigenvalue λ . Must λ be a multiple root of f(x)? Give proof or counterexample.
 - (b) Suppose μ is a multiple root of f(x). Must T have two linearly independent eigenvectors with eigenvalue μ ? Give proof or counterexample.

Part II Advanced Calculus

- 1. Let $f: S \to \mathbb{R}$ be uniformly continuous on a subset S of \mathbb{R} .
 - (a) If (x_n) is a Cauchy sequence in S, prove that $(f(x_n))$ is a Cauchy sequence in \mathbb{R} .
 - (b) If S is bounded, prove that f is bounded.
- 2. Define the natural logarithm function for x > 0 by

$$\ln(x) := \int_1^x \frac{1}{t} dt$$

- (a) Prove that ln is differentiable everywhere and hence continuous.
- (b) Prove that $\ln(ab) = \ln(a) + \ln(b)$ for all a, b > 0. [Use a change of variable.]
- (c) Noting that $\ln(1) = 0$ and $\ln'(1) = 1$, use the definition of the derivative to prove that $\ln(e) = 1$, where

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

- 3. Suppose $f:[0,1] \to [0,1]$ is continuous.
 - (a) Prove (using only the methods of calculus) that f(x) = x for some $x \in [0, 1]$.
 - (b) Starting with any $c \in [0,1]$, define a sequence $\{x_n\}$ inductively by $x_1 = c$ and $x_{n+1} = f(x_n)$. Suppose $\{x_n\}$ converges to a point x. Prove that f(x) = x.
- 4. Find a local maximum value of $f(x, y, z) = xy^2z^2$ on the plane x + y + z = 12.
- 5. Let C be the triangular boundary of the plane 6x + 3y + 2z = 6 in the first octant. Compute $I = \oint_C F \cdot ds$ for the vector field F given by F(x,y,z) = (yz,-xz,xy). [Hint: Use Stokes' Theorem.]