Department of Mathematics and Statistics
 University of Massachusetts
 Basic Exam: Linear Algebra/Advanced Calculus
 August 25, 2003

Do 7 of the following 9 problems. Indicate clearly which problems should be graded.

Passing Standard: For Master's level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. level, 75% with two questions from each part essentially complete.

Part I Linear Algebra

1. Let A be an $m \times n$ matrix over \mathbb{R}. If $A^{t} A x=0$ for some $x \in \mathbb{R}^{n}$, show that $A x=0$. Use this to show that if the columns of A are linearly independent, then $A^{t} A$ is invertible. [Hint: Consider $\langle A x, A x\rangle$ where $\langle x, y\rangle$ is the usual inner product.]
2. Let $T: V \rightarrow V$ be a linear operator on a finite dimensional vector space. Prove that there is an integer m for which $\left(\operatorname{Ker} T^{m}\right) \cap\left(\operatorname{Im} T^{m}\right)=0$.
3. Suppose a and b are nonzero real numbers. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & a & b \\
a & a^{2} & a b \\
b & a b & b^{2}
\end{array}\right) .
$$

(a) Determine the nullity of A (the dimension of $\operatorname{Ker} A$).
(b) Find two orthogonal eigenvectors for A.
(c) Must \mathbb{R}^{3} have an orthogonal basis consisting of eigenvectors for A ?
4. Let $T: V \rightarrow V$ be a linear operator on a finite dimensional vector space, with characteristic polynomial $f(x)$.
(a) Suppose T has two linearly independent eigenvectors with the same eigenvalue λ. Must λ be a multiple root of $f(x)$? Give proof or counterexample.
(b) Suppose μ is a multiple root of $f(x)$. Must T have two linearly independent eigenvectors with eigenvalue μ ? Give proof or counterexample.

Part II Advanced Calculus

1. Let $f: S \rightarrow \mathbb{R}$ be uniformly continuous on a subset S of \mathbb{R}.
(a) If $\left(x_{n}\right)$ is a Cauchy sequence in S, prove that $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in \mathbb{R}.
(b) If S is bounded, prove that f is bounded.
2. Define the natural logarithm function for $x>0$ by

$$
\ln (x):=\int_{1}^{x} \frac{1}{t} d t
$$

(a) Prove that \ln is differentiable everywhere and hence continuous.
(b) Prove that $\ln (a b)=\ln (a)+\ln (b)$ for all $a, b>0$. [Use a change of variable.]
(c) Noting that $\ln (1)=0$ and $\ln ^{\prime}(1)=1$, use the definition of the derivative to prove that $\ln (e)=1$, where

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

3. Suppose $f:[0,1] \rightarrow[0,1]$ is continuous.
(a) Prove (using only the methods of calculus) that $f(x)=x$ for some $x \in[0,1]$.
(b) Starting with any $c \in[0,1]$, define a sequence $\left\{x_{n}\right\}$ inductively by $x_{1}=c$ and $x_{n+1}=f\left(x_{n}\right)$. Suppose $\left\{x_{n}\right\}$ converges to a point x. Prove that $f(x)=x$.
4. Find a local maximum value of $f(x, y, z)=x y^{2} z^{2}$ on the plane $x+y+$ $z=12$.
5. Let C be the triangular boundary of the plane $6 x+3 y+2 z=6$ in the first octant. Compute $I=\oint_{C} F \cdot \overrightarrow{d s}$ for the vector field F given by $F(x, y, z)=(y z,-x z, x y)$. [Hint: Use Stokes' Theorem.]
