BASIC EXAM – LINEAR ALGEBRA/ADVANCED CALCULUS UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS AUGUST 2010

Do 7 of the following 9 problems.

Passing Standard: For Master's level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. level, 75% with two questions from each part essentially complete.

Show your work!

Part I. Linear Algebra

1. Denote by X the set of six vectors

(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1).

Find two different, non-empty subsets Y_1, Y_2 of X such that

- the elements of each Y_i are linearly independent, and
- the elements of $Y_i \cup \{\vec{x}\}$ are not linearly independent for any $\vec{x} \in X \setminus Y_i$.

Justify your answer!

2. Let $\vec{w} \in \mathbf{R}^n$ be a unit vector. Define a linear transformation $T: \mathbf{R}^n \to \mathbf{R}^n$ as follows:

$$T\vec{x} := \vec{x} - 2(\vec{x} \cdot \vec{w})\vec{w}$$

(where $\vec{x} \cdot \vec{w}$ is the usual inner product in \mathbf{R}^n).

(a) Show that T is an orthogonal transformation, in other words ||Tx|| = ||x|| for all x.
Hint: What is the geometric interpretation of T? You might want to draw a picture.
(b) Find the Jordan form of A.

3(a) Let A, B be $n \times n$ matrices. If AB = 0, show that

 $\operatorname{rank}(A) + \operatorname{rank}(B) \le n.$

(b) For any $n \times n$ matrix A, show that there exists a $n \times n$ real matrix B with

AB = 0 and $\operatorname{rank}(A) + \operatorname{rank}(B) = n$.

4. Suppose A is a real $n \times n$ matrix with all entries ≥ 0 and with the sum of entries in each column equal to 1.

(a) Show that A has an eigenvector with eigenvalue equal to 1.

(b) Show that all eigenvalues λ of A satisfy $|\lambda| \leq 1$

Hint: One way to do this is prove the corresponding statement for A^t ; of course there are other ways.

Part II. Advanced Calculus

1. The Fundamental Theorem of Arithmetic says that every integer n > 1 can be written uniquely as

$$n = p_1^{e_1} \cdots p_r^{e_r},$$

where $p_1 < \cdots < p_r$ are primes and the e_i are positive integers. Use the Fundamental Theorem to show that if $\{n_i\}_{i \in \mathbb{N}}$ is an infinite, strictly increasing sequence of positive integers such that the series $\sum_{i=1}^{\infty} 1/n_i$ diverges, then the set

$$\{p \text{ prime : } p \text{ divides } n_i \text{ for some } i\}$$

is infinite.

2. Fix numbers R > r > 0. Compute the volume of the solid obtained by rotating the circle $(x - R)^2 + y^2 = r^2$ above the y-axis. Show your work.

3. Let $f_1(x, y), f_2(x, y)$ be smooth functions on \mathbb{R}^2 . Denote by X_i the surface in \mathbb{R}^3 defined by $z = f_i(x, y)$. Suppose $X_1 \cap X_2 = \emptyset$. As p_i runes through all points on X_i , show that the line segment $\overline{p_1 p_2}$ is perpendicular to both X_i whenever the *length* of the line segment reaches a local minimum or local maximum.

4. Let $f: [0,1] \to \mathbf{R}$ be a Riemann integrable function. It is a fact that for any integer n > 0, the function $g_n(x) := f(x^n)$ is also Riemann integrable on [0,1].

(a) If f is continuous at x = 0, show that

(1)
$$\lim_{n \to \infty} \int_0^1 g_n(t) dt = f(0).$$

(b) Give an example to show that (1) is false if f is not continuous at x = 0.

5. Let
$$f(x,y) = xy + \int_0^y \sin(t^2) dt$$
.
(a) Compute $\nabla f(a,b)$.
(b) Show that $(0,0)$ is a saddle point of $f(x,y)$.