BASIC EXAM - LINEAR ALGEBRA/ADVANCED CALCULUS UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS AUGUST 2010

Do 7 of the following 9 problems.

Passing Standard: For Master's level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. level, 75% with two questions from each part essentially complete.

Show your work!

Part I. Linear Algebra

1. Denote by X the set of six vectors

$$
(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,1) .
$$

Find two different, non-empty subsets Y_{1}, Y_{2} of X such that

- the elements of each Y_{i} are linearly independent, and
- the elements of $Y_{i} \cup\{\vec{x}\}$ are not linearly indepedent for any $\vec{x} \in X \backslash Y_{i}$.

Justify your answer!
2. Let $\vec{w} \in \mathbf{R}^{n}$ be a unit vector. Define a linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ as follows:

$$
T \vec{x}:=\vec{x}-2(\vec{x} \cdot \vec{w}) \vec{w}
$$

(where $\vec{x} \cdot \vec{w}$ is the usual inner product in \mathbf{R}^{n}).
(a) Show that T is an orthogonal transformation, in other words $\|T \vec{x}\|=\|\vec{x}\|$ for all \vec{x}.

Hint: What is the geometric interpretation of T ? You might want to draw a picture.
(b) Find the Jordan form of A.

3(a) Let A, B be $n \times n$ matrices. If $A B=0$, show that

$$
\operatorname{rank}(A)+\operatorname{rank}(B) \leq n
$$

(b) For any $n \times n$ matrix A, show that there exists a $n \times n$ real matrix B with

$$
A B=0 \quad \text { and } \quad \operatorname{rank}(A)+\operatorname{rank}(B)=n
$$

4. Suppose A is a real $n \times n$ matrix with all entries ≥ 0 and with the sum of entries in each column equal to 1 .
(a) Show that A has an eigenvector with eigenvalue equal to 1 .
(b) Show that all eigenvalues λ of A satisfy $|\lambda| \leq 1$

Hint: One way to do this is prove the corresponding statement for A^{t}; of course there are other ways.

Part II. Advanced Calculus

1. The Fundamental Theorem of Arithmetic says that every integer $n>1$ can be written uniquely as

$$
n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}},
$$

where $p_{1}<\cdots<p_{r}$ are primes and the e_{i} are positive integers. Use the Fundamental Theorem to show that if $\left\{n_{i}\right\}_{i \in \mathbf{N}}$ is an infinite, strictly increasing sequence of positive integers such that the series $\sum_{i=1}^{\infty} 1 / n_{i}$ diverges, then the set
$\left\{p\right.$ prime: p divides n_{i} for some $\left.i\right\}$
is infinite.
2. Fix numbers $R>r>0$. Compute the volume of the solid obtained by rotating the circle $(x-R)^{2}+y^{2}=r^{2}$ above the y-axis. Show your work.
3. Let $f_{1}(x, y), f_{2}(x, y)$ be smooth functions on \mathbf{R}^{2}. Denote by X_{i} the surface in \mathbf{R}^{3} defined by $z=f_{i}(x, y)$. Suppose $X_{1} \cap X_{2}=\emptyset$. As p_{i} runes through all points on X_{i}, show that the line segment $\overline{p_{1} p_{2}}$ is perpendicular to both X_{i} whenever the length of the line segment reaches a local minimum or local maximum.
4. Let $f:[0,1] \rightarrow \mathbf{R}$ be a Riemann integrable function. It is a fact that for any integer $n>0$, the function $g_{n}(x):=f\left(x^{n}\right)$ is also Riemann integrable on $[0,1]$.
(a) If f is continuous at $x=0$, show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}(t) d t=f(0) \tag{1}
\end{equation*}
$$

(b) Give an example to show that (1) is false if f is not continuous at $x=0$.
5. Let $f(x, y)=x y+\int_{0}^{y} \sin \left(t^{2}\right) d t$.
(a) Compute $\nabla f(a, b)$.
(b) Show that $(0,0)$ is a saddle point of $f(x, y)$.

