DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS MASTER'S OPTION EXAM-APPLIED MATHEMATICS

August 2007
Do five of the following problems. All problems carry equal weight. Passing level: 60% with at least two substantially correct.

1. The growth of cancerous tumors can be modeled by Gompertz law $\dot{N}=-a N \ln (b N)$, where $N(t)$ is proportional to the number of cells in the tumor, and $a, b>0$ are parameters.
(a) Interpret a and b biologically.
(b) Using linear stability analysis, classify the fixed points of the Gompertz model of tumor growth.
2. Here is a model for a love affair. Let $R(t)$ be Romeo's love/hate for Juliet at time t and let $J(t)$ be Juliet's love/hate for Romeo at time t. Positive values of R, J signify love, negative values signify hate. A model of this star-crossed romance is

$$
\begin{aligned}
\frac{d R}{d t} & =J \\
\frac{d J}{d t} & =-R+J
\end{aligned}
$$

(a) Characterize the romantic styles of Romeo and Juliet.
(b) Classify the fixed point at the origin. What does this imply for this love affair?
(c) Sketch $R(t)$ and $J(t)$ as functions of t, assuming $R(0)=1$ and $J(0)=0$.
3. Let $x(t)$ be the number of rabbits at time t and $y(t)$ be the number of sheep at time t governed by the nonlinear system

$$
\begin{aligned}
& \frac{d x}{d t}=x(3-x-y) \\
& \frac{d y}{d t}=y(2-x-y)
\end{aligned}
$$

Find the fixed points, investigate stability and sketch a plausible phase portrait.
4. (a) Give a physical interpretation of the equation

$$
u_{t}+x u_{x}=0
$$

(b) Draw the characteristics and solve the above equation with initial data $u(x, 0)=\cos (x)$.
5. Find all solutions to

$$
u_{x x}+u_{y y}=0
$$

in the rectangle $0<x<a, 0<y<b$, with the following boundary conditions

$$
\begin{gathered}
u_{x}=-a \text { on } x=0, u_{x}=0 \text { on } x=a . \\
u_{y}=b \text { on } y=0, u_{y}=0 \text { on } y=b .
\end{gathered}
$$

(Hint: Try $u(x, y)=X(x)+Y(y)$ not $u(x, y)=X(x) Y(y)$.)
6. Consider a thin cylindrical metal bar with heat conductivity k. Suppose that the temperature at any point x along the bar is denoted by $\theta(x, t)$
at time $t . x$ runs from $x=0$ to $x=1$, the length of the bar is one. The ends of the bar are maintained at temperatures θ_{0} at $x=0$ and θ_{1} at $x=1$
(a) Write down the governing partial differential equation and boundary conditions for this physical problem.
(b) Find the Fourier series solution when the initial temperature profile is

$$
\theta(x, 0)=\theta_{0}+\left(\theta_{1}-\theta_{0}\right) x+\alpha x(1-x)
$$

for a constant $\alpha>0$.

