DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MASTER'S OPTION EXAM-APPLIED MATHEMATICS September 2006

Do five of the following problems. All problems carry equal weight. Passing level: 60% with at least two substantially correct.

1. Consider the circuit equation

$$LI'' + RI' + IC = 0$$

where L, C > 0 and $R \ge 0$.

- (a) Rewrite the equation as a two-dimensional system.
- (b) Show that the origin is asymptotically stable if R > 0 and neutrally stable if R = 0.
- (c) Classify the fixed point at the origin, depending on whether R^2C-4L is positive, negative, or zero, and sketch the phase portrait in all three cases.
- 2. Consider the system $x' = y^3 4x$, $y' = y^3 y 3x$.
 - (a) Find all the fixed points and classify them.
 - (b) Show that |x(t) y(t)| approaches 0 as t approaches ∞ for all other trajectories. (Hint: Form a differential equation for x y.)
 - (c) Draw the phase portrait.
- 3. In a certain fishery, assume that fish are caught at a constant rate h (harvesting rate) independent of the size of the fish population. K is

the natural capacity of the fishery, r is the natural growth rate. Then the number of fish in the fishery at any time t, y(t), satisfies

$$\frac{dy}{dt} = r(1 - \frac{y}{K})y - h$$

- (a) Determine a condition (an inequality between h, r, K) such that any initial fish population will eventually become depleted (that is, y(t) = 0 for some t > 0).
- (b) On the other hand, under what conditions is there a stable fixed point y^* ? Give an explicit formula for y^* .
- 4. Consider the initial boundary value problem for a function u(x,t):

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < L, \quad t > 0$$

$$u(L, t) = B, \quad \frac{\partial u}{\partial x}(0, t) = Q$$

$$u(x, 0) = u_0(x).$$

- (a) Explain in physical terms the meaning of the constants D, B, Q when u represents the temperature in a rod over the interval $0 \le x \le L$.
- (b) Determine the equilibrium solution $u^*(x)$ that is independent of time.
- (c) The general solution with initial solution $u_0(x)$ has the form

$$u(x,t) = u^*(x) + \sum_{k=1}^{\infty} e^{-\lambda_k t} \phi_k(x).$$

Exhibit both the differential equation and the boundary conditions that each function ϕ_k must satisfy.

5. Consider the Laplace equation

$$\triangle u = u_{xx} + u_{yy} = 0 \text{ in } x^2 + y^2 < R^2$$

in a disk of radius R. Find the solution u satisfying the boundary condition

$$u(R,\theta) = 3\cos(2\theta) + 5\sin(\theta) \qquad (\theta \in [0, 2\pi])$$

6. The motion of a string with friction is modeled by the modified wave equation

$$u_{tt} - c^2 u_{xx} + \gamma u_t = 0.$$

Here $\gamma > 0$ and $u_x(0,t) = u_x(L,t) = 0$.

(a) Let

$$E = \frac{1}{2} \int_0^L (u_t^2 + c^2 u_x^2) dx$$

and derive the identity

$$\frac{\partial E}{\partial t} = -\gamma \int_0^L {u_t}^2 dx$$

- (b) Interpret this identity in terms of dissipation of energy.
- 7. Consider the following hat function f(x) given by

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le \pi/2\\ \pi - x & \text{if } \pi/2 \le x \le \pi \end{cases}$$

- (a) Find the Fourier sine series for f(x).
- (b) Find the Fourier sine series for f'(x).
- (c) What can you say about their convergence at $\pi/2$.