DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS AMHERST
 BASIC NUMERIC ANALYSIS EXAM AUGUST 2012

Do five of the following problems. All problems carry equal weight. Passing level:

Masters: 60% with at least two substantially correcct
PhD: 75% with at least three substantially correct.

1. Derive the numerical differentiation formula of the form

$$
f^{\prime}(x) \approx S_{h} f=a f(x)+b f(x+h)+c f(x+2 h)
$$

with the high possible degree of precision
(a) Bound the error in the approximation, assuming f is smooth enough.
(b) Use Richardson extrapolation to combine S_{h} and $S_{h / 2}$ to produce a more accurate approximation.
2. Find the linear least squares approximate p_{1} to $f(t)=e^{t}$ on $[0,1]$, that is, the polynomial of degree 1 for which

$$
\int_{0}^{1}\left[p_{1}(t)-f(t)\right]^{2} d t=\text { minumum }
$$

3. Consider the natural cubic spline function $s(x)$ defined on [0,2] which interpolates the function $f(x)$ using the following data:

x_{i}	0	1	2
$f\left(x_{i}\right)$	f_{0}	f_{1}	f_{2}

Therefore, $s(x)$ is defined piecewise by 2 cubic polynomials,

$$
s(x)= \begin{cases}s_{0}(x) & 0 \leq x \leq 1, \\ s_{1}(x) & 1 \leq x \leq 2 .\end{cases}
$$

Suppose that $s_{0}(x)=1+2 x+4 x^{3}$. Then
(a) What are the values of f_{0} and f_{1} ?
(b) What is the value of f_{2} ?
(c) Suppose further that $f \in C^{2}[0,2]$. Show

$$
\int_{0}^{2}\left[s(x)^{\prime \prime}\right]^{2} d x \leq \int_{0}^{2}\left[f(x)^{\prime \prime}\right]^{2} d x
$$

4. Let f be an arbitrary(continuous) function on $[0,1]$, satisfying $f(x)+$ $f(1-x)=1$ for $0 \leq x \leq 1$.
(a) Show that $\int_{0}^{1} f(x) d x=\frac{1}{2}$.
(b) Show that the composite trapezoidal rule for computing $\int_{0}^{1} f(x) d x$ is exact.
5. Consider the ODE initial-value problem

$$
\frac{d y}{d x}(x)=f(x, y(x)),
$$

with initial data $y\left(x_{0}\right)=y_{0}$. We would like to solve this initial value problem at points $x_{n}=n h, n=0, \ldots, N$ where $h=x_{n}-x_{n-1}$ for all n. Find the highest order method in the class

$$
y_{n+1}=y_{n}+h\left[b_{1} f\left(x_{n}, y_{n}\right)+b_{2} f\left(x_{n-1}, y_{n-1}\right)\right] .
$$

i.e., find b_{1} and b_{2} for the above method which gives the highest order local truncation error. State the order of the method obtained.
6. (a) Let A be an $n \times n$ matrix and $\|\cdot\|_{1}$ denote the vector norm on R^{n} given by $\|v\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right|$. Show that the matrix induced norm from the given vector norm is given by

$$
\|A\|_{1}=\max _{j} \sum_{i=1}^{n}\left|A_{i, j}\right| .
$$

(b) Let $\|\cdot\|_{2}$ denote the norm on R^{n} given by $\|v\|_{2}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{2}\right)^{1 / 2}$. For

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right)
$$

compute $\|A\|_{2}$.
7. Let $u, v \in \mathbb{R}^{n}$ be column vectors, and consider the rank one perturbation of the identity defined by $A=I-u v^{T}$.
(a) Show that if A is nonsingular, then its inverse has the form $A^{-1}=$ $I+\alpha u v^{T}$ for some scalar α. Give an expression for α.
(b) For what u and v is A singular? Show if A is singular, then it is a projector.
(c) For what u and v is A an orthogonal projector?

