DEPARTMENT OF MATHEMATICS AND STATISTICS
 UMASS - AMHERST
 BASIC EXAM - PROBABILITY
 WINTER 2012

Work all problems. Show your work. Explain your answers. State the theorems used whenever possible. 60 points are needed to pass at the Masters level and 75 to pass at the Ph.D. level

1. (20 points) There is more information in the joint distribution of two random variables than can be discerned by looking only at their marginal distributions. Consider two random variables, X_{1} and X_{2}, each distributed $\operatorname{binomial}(1, \pi)$, where $0<\pi<1$. Let $Q_{a b}=P\left\{X_{1}=a, X_{2}=b\right\}$.
(a) In general, show that $0 \leq Q_{11} \leq \pi$. In particular, evaluate Q_{11} in three cases: where X_{1} and X_{2} are independent, where $X_{2}=X_{1}$, and where $X_{2}=1-X_{1}$.
(b) For each case in (a), evaluate Q_{00}.
(c) If $P\left\{X_{2}=1 \mid X_{1}=0\right\}=\alpha$ and $P\left\{X_{2}=0 \mid X_{1}=1\right\}=\beta$, then express π, Q_{00}, and Q_{11} in terms of α and β.
(d) In part (c), find the correlation between X_{1} and X_{2} in terms of α and β.
2. (20 points) Let Y_{1} and Y_{2} have the joint probability density function:

$$
\begin{aligned}
f\left(y_{1}, y_{2}\right) & =k\left(1-y_{2}\right), 0 \leq y_{1} \leq y_{2} \leq 1 \\
& =0, \text { otherwise } .
\end{aligned}
$$

(a) Find k.
(b) Find the marginal density functions for Y_{1} and Y_{2}.
(c) Are Y_{1} and Y_{2} independent? Why or why not?
(d) Find the conditional density function of Y_{2} given $Y_{1}=y_{1}$.
(e) Find $\operatorname{Pr}\left(Y_{2} \geq 3 / 4 \mid Y_{1}=1 / 2\right)$.
3. (20 points) Suppose that the random variable Y has a Poisson distribution with mean λ. The probability mass function is

$$
f(y \mid \lambda)=\frac{e^{-\lambda} \lambda^{y}}{y!}, \text { for } \lambda>0, y=0,1,2, \ldots
$$

(a) Prove that $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.
(b) Find the moment generating function of Y.
(c) Suppose that Y_{1} and Y_{2} are independent Poisson random variables with means λ_{1} and λ_{2} respectively.
i. Derive the distribution of $Z=Y_{1}+Y_{2}$.
ii. Derive the distribution of $Y_{1} \mid Z=k$.
4. (20 points) Suppose $X_{i}, i=1, \ldots, n$ are independent and each has mean μ and variance $\sigma^{2}<\infty$. Let $Z_{i}=X_{i}-\mu$.
(a) Let $S_{n}=Z_{1}+\ldots+Z_{n}$. Prove that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|S_{n} / n\right|>0\right)=0$.
(b) Find $f(n, \sigma)$, a function of n and σ, so that $Z_{n}=f(n, \sigma) S_{n}$ converges in distribution to a standard normal distribution as $n \rightarrow \infty$.
(c) Approximately what is $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|Z_{n}\right|>1.645\right)$?
5. (20 points) Suppose we flip coins. Let the random variable $X_{i}=1$ if the i th flip is a head and 0 otherwise. Assume that the $X_{i} \mathrm{~s}$ are independent Bernoulli random variables with $\operatorname{Pr}\left(X_{i}=1\right)=\pi$. Let N be the number of flips required to get the first head $(N=1,2, \ldots)$.
(a) What is $E\left(N \mid X_{1}=i\right), i=0,1$?
(b) Use the result from part (a) and the law of iterated expectations to derive $E(N)$.
(c) What is the the probability mass function of N ?
(d) Let $M=N-k$, where $k>0$ is a constant integer. Derive $\operatorname{Pr}(M>m \mid N>$ $k)$.
(e) What is the probability mass function of M ?

