DEPARTMENT OF MATHEMATICS AND STATISTICS UMASS - AMHERST BASIC EXAM - PROBABILITY WINTER 2008

Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D. level.

- 1. Suppose an individual can be either diseased (D) or healthy (H). A medical diagnostic test can say that an individual is diseased (+) or healthy (-). In a particular population,
 - the probability an individual is D and the test is + is 0.009,
 - the probability an individual is D and the test is is 0.001,
 - the probability an individual is H and the test is + is 0.099,
 - and the probability an individual is H and test is is 0.891.
 - (a) (10 pts) Suppose an individual is randomly selected from that particular population. What is the probability that she is healthy?
 - (b) (5 pts) Given that an individual is diseased, what the probability that the test is +?
 - (c) (5 pts) Suppose an individual gets the test, and the test is positive. What is the probability that the individual is diseased?
- 2. Suppose $X \sim U(0,1)$. Note that f(x) = 1 when $0 \le x \le 1$ and f(x) = 0 otherwise.
 - (a) (5 pts) What is the probability that \sqrt{X} is less than 1/2?
 - (b) (10 pts) What is the second moment of 1/X?
 - (c) (10 pts) Suppose that G(y) is the cumulative distribution function (CDF) of a continuous random variable with probability distribution function (PDF) g(y). Note that $G(y) = \int_{-\infty}^{y} g(t)dt$. Let $G^{-1}(p)$ be the inverse of the CDF. Let $Z = G^{-1}(X)$. Derive the PDF of Z.
- 3. Suppose *Y* has PDF $f(y) = c \exp(-y/2)$ when y > 0 and f(y) = 0 otherwise.
 - (a) (5 pts) What is c?
 - (b) (5 pts) Derive the moment generating function of *Y*.
 - (c) (5 pts) Use the moment generating function to find $E(Y^k)$ for k=1,2,3.
 - (d) (5 pts) Prove that $E(Y^k) \ge E(Y)^k$ for k > 1. It is OK to cite a theorem.
 - (e) (5 pts) What is the PDF of 3Y?

- (f) (5 pts) Let $X = Y1_{Y>3} 3$ where $1_{Y>3} = 1$ if Y > 3 and 0 otherwise. Derive E(X).
- 4. Suppose $X_i, i=1,\ldots$ are independent and identically distributed with mean μ and variance $\sigma^2<\infty$. Let $Z_i=(X_i-\mu)/\sigma$.
 - (a) (5 pts) Let $M_n=n^{-1}\sum_{i=1}^n Z_i$. Prove that $\lim_{n\to\infty} Pr(|M_n|>0)=0$. For partial credit, you may just state a theorem.
 - (b) (10 pts) Let f(n) be a function of n. Find an f(n) so that the variance of $f(n)M_n=1$.
 - (c) (10 pts) Let A be a constant. State and apply a theorem that will allow you to determine $\lim_{n\to\infty} Pr(f(n)M_n < A)$.