DEPARTMENT OF MATHEMATICS AND STATISTICS UMASS - AMHERST BASIC EXAM - PROBABILITY
 FALL 2007

Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D. level.

1. Suppose $X_{i} \stackrel{\text { i.i.d }}{\sim} U(0,10), i=1, \ldots, n$. Note that $f(x)=1 / 10,0 \leq x \leq 10$, $E(X)=5$ and $\operatorname{Var}(X)=100 / 12$.
(a) (5 pts) Write down an expression for the probability that all $X_{i} \mathrm{~s}$ are greater than 1.
(b) (10 pts) Let $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}$. Find an expression that involves \bar{X} and known constants that converges to a $\mathrm{N}(0,1)$ distribution as n gets large. What theorem is your result based on?
(c) $(10 \mathrm{pts})$ Find the mean of $1 / X_{i}$.
2. Let X and Y be random variables with pdf:
$f_{X, Y}(x, y)=1,0 \leq x \leq 1, x \leq y \leq x+1$, and $f_{X, Y}(x, y)=0$ otherwise.
(a) (5 pts) Show that $f(x, y)$ is a density.
(b) (5 pts) Are X and Y independent? Why or why not?
(c) $(5 \mathrm{pts})$ Find $f_{X}(x)$.
(d) (5 pts) Find $\mathrm{E}(Y \mid X=x)$.
(e) (5 pts) Find $\operatorname{Pr}(X+Y<0.5)$
3. Suppose $X \stackrel{\text { ind. }}{\sim} \operatorname{Bin}(n, p)$ and $Y \stackrel{\text { ind }}{\sim} \operatorname{Bin}(m, p)$. Note that the $\operatorname{Bin}(k, q)$ probability mass function is $\binom{k}{x} q^{x}(1-q)^{k-x}, x=0, \ldots, k, 0 \leq q \leq 1$.
(a) (15 pts) Find the conditional distribution of X given that $X+Y=j$. Give the probability mass function of this conditional distribution and identify it by its family name and parameters.
(b) (5 pts) What is $\operatorname{Pr}(X>Y)$?
(c) (5 pts) What is $\operatorname{Pr}(X / Y=1)$?
4. Suppose $X \mid Y=y \sim \operatorname{Poisson}(y)$ and $Y \sim \operatorname{Unif}(0,1)$. (The Poisson (λ) pmf is $f(x)=\exp (-\lambda) \lambda^{x} / x$! when $\lambda>0$ and $x=0,1,2, \ldots$ and zero otherwise.)
(a) (5 pts) What is the mean of X ?
(b) (10 pts) What is the marginal distribution of X ?
(c) (10 pts) What are $\mathrm{E}(X Y)$ and $\operatorname{Var}(X Y)$?
