DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS
 BASIC EXAM - STATISTICS
 Friday, January 18, 2013

Work all five problems. Sixty points are needed to pass at the Master's level and seventyfive at the Ph.D. level.

1. ($\mathbf{2 0}$ points) Let $X_{1}, \ldots X_{n}$ be a random sample from the exponential distribution, with unknown location parameter θ and scale parameter λ, whose density is given by

$$
p(x \mid \theta, \lambda)=\lambda \exp [-\lambda(x-\theta)], \quad \theta \leq x<\infty
$$

where $-\infty<\theta<\infty$, and $0<\lambda<\infty$.
(a) Find the mean and variance of $(X-\theta)$.
(b) Find the mean (μ) and variance $\left(\sigma^{2}\right)$ of X.
(c) Find the MLEs of θ and λ. (NOTE: You must justify why your answers are MLEs.)
(d) Write down the MLEs of μ and σ^{2}, with brief explanations.
2. ($\mathbf{2 0}$ points) Let $X_{1}, \ldots X_{n}$ denote a random sample from the Poisson (λ) distribution. Let $\theta=\lambda^{2}$.
(a) Determine the Cramer-Rao bound on an unbiased est imator of λ.
(b) Determine the Cramer-Rao bound on an unbiased est imator of $\theta=\lambda^{2}$.
(c) Determine the Uniform Minimum Variance Unbiased Estimator of $\theta=\lambda^{2}$.
(d) Consider

$$
\tilde{\theta}_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{i}\left(X_{i}-1\right)
$$

as an estimator of $\theta=\lambda^{2}$. Discuss its properties, good features, shortcomings, etc., being sure to include at least one good feature and at least one shortcoming.
3. (20 points) Let $X_{1}, \ldots X_{n}$ be a random sample from a gamma distribution with probability density function:

$$
f(x \mid \alpha, \beta)=\frac{x^{\alpha-1} \exp (-x / \beta)}{\Gamma(\alpha) \beta^{\alpha}}, x>0, \alpha>0, \beta>0 .
$$

Consider the prior distribution for the parameter β as an inverse gamma distribution with the following probability density function [i.e., $\beta \sim \operatorname{Inverse} \operatorname{Gamma}(\lambda, \theta)$]:

$$
p(\beta \mid \lambda, \theta)=\frac{\exp (-1 /(\theta \beta))}{\Gamma(\lambda) \theta^{\lambda} \beta^{\lambda+1}}, \quad \beta>0, \lambda>0, \theta>0 .
$$

Note that for $\beta \sim \operatorname{Inverse} \operatorname{Gamma}(\lambda, \theta)$, the following are known

$$
\begin{gathered}
E(\beta)=\left[\frac{1}{\theta(\lambda-1)}\right], \text { for } \lambda>1, \\
\operatorname{Var}(\beta)=\left[\frac{1}{\theta^{2}(\lambda-1)^{2}(\lambda-2)}\right], \text { for } \lambda>2,
\end{gathered}
$$

(a) Find the posterior distribution of β.
(b) Find the posterior mean of β.
(c) Describe how to construct a 95% equal-tail posterior interval for β.
4. ($\mathbf{2 0}$ points) Let $X_{1}, \ldots X_{n}$ be a random sample from a normal distribution with mean θ and variance σ^{2}. Suppose we want to test the null hypothesis $H_{0}: \theta \leq 0$ against the one-sided alternative $H_{1}: \theta>0$.
For the Bayesian parts of the problem, the prior distribution on θ is normal with mean 0 and variance τ^{2}, with τ^{2} known. Note that this prior is symmetric about the hypotheses such that $P(\theta \leq 0)=P(\theta>0)=0.5$.
(a) Find the posterior distribution of θ.
(b) Find the posterior probability that H_{0} is true, $P\left(\theta \leq 0 \mid x_{1}, x_{2}, \ldots, x_{n}\right)$.
(c) Find an expression for the p-value corresponding to a value of \bar{x}, using tests that reject for large values of \bar{X}.
(d) For the special case $\sigma^{2}=\tau^{2}=1$, compare $P\left(\theta \leq 0 \mid x_{1}, x_{2}, \ldots x_{n}\right)$ and the p-value for values of $\bar{x}>0$. Show that the Bayes probability is always greater than the p-value.
(e) Using the expression derived above, show that

$$
\lim _{\tau^{2} \rightarrow \infty} P\left(\theta \leq 0 \mid x_{1}, \ldots x_{n}\right)=\mathrm{p} \text {-value. }
$$

5. (20 points) Let $X_{1}, \ldots X_{n}$ be a random sample from a $N(\mu, 1)$ distribution, where the mean μ is unknown, which has pdf:

$$
f(x \mid \mu)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(x-\mu)^{2}\right\}, \text { for }-\infty<x<\infty,-\infty<\mu<\infty
$$

(a) Consider testing

$$
H_{0}: \mu=0 \text { versus } H_{1}: \mu=\mu_{1}
$$

where $\mu_{1}>0$ is a given number.
i. Derive the most powerful test (MPT). You need to specify the critical region for the test of size α, with critical value being a quantile of a standard normal distribution (with justifications).
ii. Find the power of the MPT when $\mu=1 / 2$ for $n=16$ and $\alpha=0.05$. (A table of the $N(0,1)$ distribution is enclosed.)
(b) Now consider another problem of testing

$$
H_{0}: \mu=0 \text { versus } H_{1}: \mu \neq 0
$$

i. Derive the likelihood ratio test (LRT). You need to specify the critical region for the test of size α, with critical value also being a quantile of the standard normal distribution (with justifications).
ii. Find the power of the LRT when $\mu=1 / 2$ for $n=16$ and $\alpha=0.05$.
(c) Based on the power computations, can the above LRT be a UMP test? Explain why.

