DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS BASIC EXAM - STATISTICS Friday, January 18, 2013

Work all five problems. Sixty points are needed to pass at the Master's level and seventyfive at the Ph.D. level.

1. (20 points) Let X_1, \ldots, X_n be a random sample from the exponential distribution, with unknown location parameter θ and scale parameter λ , whose density is given by

 $p(x|\theta,\lambda) = \lambda \exp[-\lambda(x-\theta)], \ \theta \le x < \infty,$

where $-\infty < \theta < \infty$, and $0 < \lambda < \infty$.

- (a) Find the mean and variance of $(X \theta)$.
- (b) Find the mean (μ) and variance (σ^2) of X.
- (c) Find the MLEs of θ and λ . (NOTE: You must justify why your answers are MLEs.)
- (d) Write down the MLEs of μ and σ^2 , with brief explanations.
- 2. (20 points) Let X_1, \ldots, X_n denote a random sample from the $Poisson(\lambda)$ distribution. Let $\theta = \lambda^2$.
 - (a) Determine the Cramer-Rao bound on an unbiased est imator of λ .
 - (b) Determine the Cramer-Rao bound on an unbiased est imator of $\theta = \lambda^2$.
 - (c) Determine the Uniform Minimum Variance Unbiased Estimator of $\theta = \lambda^2$.
 - (d) Consider

$$\tilde{\theta}_n = \frac{1}{n} \sum_{k=1}^n X_i(X_i - 1)$$

as an estimator of $\theta = \lambda^2$. Discuss its properties, good features, shortcomings, etc., being sure to include at least one good feature and at least one shortcoming.

3. (20 points) Let X_1, \ldots, X_n be a random sample from a gamma distribution with probability density function:

$$f(x|\alpha,\beta) = \frac{x^{\alpha-1}\exp(-x/\beta)}{\Gamma(\alpha)\beta^{\alpha}}, \ x > 0, \ \alpha > 0, \ \beta > 0.$$

Consider the prior distribution for the parameter β as an inverse gamma distribution with the following probability density function [i.e., $\beta \sim \text{Inverse Gamma}(\lambda, \theta)$]:

$$p(\beta|\lambda,\theta) = \frac{\exp(-1/(\theta\beta))}{\Gamma(\lambda)\theta^{\lambda}\beta^{\lambda+1}}, \quad \beta > 0, \ \lambda > 0, \ \theta > 0.$$

Note that for $\beta \sim$ Inverse Gamma(λ, θ), the following are known

$$E(\beta) = \left[\frac{1}{\theta(\lambda - 1)}\right], \text{ for } \lambda > 1,$$
$$\operatorname{Var}(\beta) = \left[\frac{1}{\theta^2(\lambda - 1)^2(\lambda - 2)}\right], \text{ for } \lambda > 2,$$

- (a) Find the posterior distribution of β .
- (b) Find the posterior mean of β .
- (c) Describe how to construct a 95% equal-tail posterior interval for β .
- 4. (20 points) Let X_1, \ldots, X_n be a random sample from a normal distribution with mean θ and variance σ^2 . Suppose we want to test the null hypothesis $H_0: \theta \leq 0$ against the one-sided alternative $H_1: \theta > 0$.

For the Bayesian parts of the problem, the prior distribution on θ is normal with mean 0 and variance τ^2 , with τ^2 known. Note that this prior is symmetric about the hypotheses such that $P(\theta \leq 0) = P(\theta > 0) = 0.5$.

- (a) Find the posterior distribution of θ .
- (b) Find the posterior probability that H_0 is true, $P(\theta \le 0 | x_1, x_2, \dots, x_n)$.
- (c) Find an expression for the p-value corresponding to a value of \bar{x} , using tests that reject for large values of \bar{X} .
- (d) For the special case $\sigma^2 = \tau^2 = 1$, compare $P(\theta \le 0 | x_1, x_2, \dots, x_n)$ and the p-value for values of $\bar{x} > 0$. Show that the Bayes probability is always greater than the p-value.
- (e) Using the expression derived above, show that

$$\lim_{\tau^2 \to \infty} P(\theta \le 0 | x_1, \dots x_n) = \text{ p-value.}$$

5. (20 points) Let X_1, \ldots, X_n be a random sample from a $N(\mu, 1)$ distribution, where the mean μ is unknown, which has pdf:

$$f(x|\mu) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(x-\mu)^2\}, \text{ for } -\infty < x < \infty, -\infty < \mu < \infty.$$

(a) Consider testing

$$H_0: \mu = 0$$
 versus $H_1: \mu = \mu_1$,

where $\mu_1 > 0$ is a given number.

- i. Derive the most powerful test (MPT). You need to specify the critical region for the test of size α , with critical value being a quantile of a standard normal distribution (with justifications).
- ii. Find the power of the MPT when $\mu = 1/2$ for n = 16 and $\alpha = 0.05$. (A table of the N(0, 1) distribution is enclosed.)
- (b) Now consider another problem of testing

$$H_0: \mu = 0$$
 versus $H_1: \mu \neq 0$.

- i. Derive the likelihood ratio test (LRT). You need to specify the critical region for the test of size α , with critical value also being a quantile of the standard normal distribution (with justifications).
- ii. Find the power of the LRT when $\mu = 1/2$ for n = 16 and $\alpha = 0.05$.
- (c) Based on the power computations, can the above LRT be a UMP test? Explain why.