UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Statistics Friday, January 14, 2011

Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D. level.

1. (20 PTS) Let X_1, \ldots, X_n be a random sample from a uniform distribution with probability density function

$$f(x;\theta) = \frac{1}{\theta}, \quad 0 \le x \le \theta, \ \theta > 0$$

- (a) Find the moment estimator of θ , $\tilde{\theta}$, by the method of moments.
- (b) Show that the maximum likelihood estimator for θ is $\hat{\theta} = X_{(n)} = \max\{X_1, \dots, X_n\}$.
- (c) Compute the mean square error (MSE) for $\tilde{\theta}$ and $\hat{\theta}$, respectively [Note that the probability density function of $X_{(n)}$ is $f(x_{(n)}; \theta) = \frac{nx_{(n)}^{n-1}}{\theta^n}$ where $0 \le x_{(n)} \le \theta$]
- (d) Which estimator is preferred? Justify your choice.
- 2. (20 PTS) Let X_1, \ldots, X_n be a random sample from a Poisson distribution with probability mass function

$$f(x;\theta) = \frac{e^{-\theta}\theta^x}{x!}, \quad \theta > 0, \quad x = 0, 1, 2, \cdots.$$

We know that the maximum likelihood estimator for θ is $\hat{\theta} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

- (a) Find a complete sufficient statistic for θ .
- (b) Find the UMVUE (uniform minimum variance unbiased estimator) for θ . State clearly what general results you are applying.

Consider the prior distribution for the parameter θ as a gamma distribution with probability density function (i.e., $\theta \sim Gamma(\alpha, \beta)$)

$$f(\theta; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{\theta/\beta}, \quad \theta > 0, \alpha > 0, \beta > 0$$

Note that for $\theta \sim Gamma(\alpha, \beta)$, $E(\theta) = \alpha\beta$ and $Var(\theta) = \alpha\beta^2$.

- (c) Find the posterior distribution of θ .
- (d) Find the Bayes estimator of θ under squared error loss.

3. (15 PTS) Let X_1, \ldots, X_n be a random sample from an exponential distribution with probability density function

$$f(x; \lambda) = \frac{1}{\lambda} e^{-x/\lambda}, \ 0 < x < \infty, 0 < \lambda < \infty$$

- (a) Find the maximum likelihood estimator of λ . Also show that your value is an MLE.
- (b) For a fixed large n, find a 95% confidence interval for λ using normal approximation.
- (c) For a fixed large n, describe how one can construct a 95% confidence interval for λ using the likelihood ratio statistic.
- 4. (20 points) Let X_1, \ldots, X_n be i.i.d. Bernoulli variables with probability p of success. Let \hat{p}_n be the MLE of the p. We are particularly interested in the logistic transformation

$$\theta = \log_e \left(\frac{p}{1-p}\right) \cdot$$

- (a) Find the asymptotic distribution of $\sqrt{n}(\hat{p}_n p)$.
- (b) Find the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n \theta)$.
- (c) In terms of n and p, state the approximate distribution of $\hat{\theta}_n$.
- (d) Obtain an approximate 95% confidence interval for θ for a fixed large n.
- 5. (25 points) Let X_1, \dots, X_{25} be a random sample from a normal distribution with an unknown mean μ and variance 1. Consider testing the hypotheses

 $H_0 : \mu \le 0$ against $H_1 : \mu > 0$.

It is known that the UMP size 0.05 test rejects H_0 iff $5\overline{X} > c$, for some constant c.

- (a) Find the value c.
- (b) Explain what it means to be UMP.
- (c) Construct the power function of the test, and calculate the power of the test at $\mu = 0.5$. Is the power function an increasing function of μ ? Sketch the power function and explain it.
- (d) Should the type I error probability at $\mu = -1$ be larger or smaller than 0.05? Explain briefly.
- (e) Now suppose we set the critical value c of the test to 1.96, then what is size of the new test?