DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS BASIC EXAM - STATISTICS January 27, 2006

Do all five problems. Sixty points are needed to pass at the Master's level and seventyfive at the Ph.D. level.

- 1. (16 points) For one observation Y from a normal distribution with variance one and mean 0 or 2, consider $H_0: \mu = 0$ and $H_A: \mu = 2$. Suppose first that we observe only Y.
 - (a) Construct a size α likelihood ratio test. Give explicitly the rejection region in terms of Y.
 - (b) Find the power for your test in the previous part.
 - (c) Is the test unbiased? Explain.
 - (d) Is the likelihood ratio test UMP? Explain what result you are applying.
- 2. (20 points) Children are given an intellegence test. Given a child with true IQ equal to μ , this child's test score Y is a normal random variable with variance 100 and mean μ . Suppose the mean μ is viewed as having a normal distribution with mean 100 and variance 225 (this could be from acutally sampling an individual at random from a population or in the Bayesian perspective, which can be viewed as a prior distribution for μ .)
 - (a) Incorporating the "randomness" in μ and that of Y given μ , the marginal distribution of Y is known to be normal. Find E(Y) and Var(Y).
 - (b) What is the posterior distribution of μ given Y = y.
 - (c) Suppose a child scores 115 on a test:
 - i. Use the previous part to give the posterior distribution of his or her true IQ.
 - ii. Find 95% Bayesian confidence interval for his or her true IQ.
 - iii. Find the posterior probability that his or her true IQ is less than 100.
- 3. (20 points) The assessment of the proportion of defective units in a lot of units is an important problem. Suppose you take a random sample of n units from a lot large enough to treat X_1, \ldots, X_n as i.i.d. Bernoulli (p), where $X_i = 1$ if unit i in the sample is defective and is 0 otherwise. Hence, p is the probability of getting a defective unit or equivalently, the proportion of defective units in the population. Let

$$\hat{p} = \sum_{i=1}^{n} X_i / n$$

(a) Give a complete sufficient statistic for p. State precisely what result you are applying to give this.

- (b) We usually use \hat{p} to estimate p and use $\hat{p}(1-\hat{p})/n$ to estimate the $V(\hat{p}) = \sigma_{\hat{p}}^2$ (the variance of \hat{p}). Show that $\hat{p}(1-\hat{p})/n$ is a biased estimator of $\sigma_{\hat{p}}^2$.
- (c) Find the UMVUE of $\sigma_{\hat{p}}^2$. You must justify your answer.
- 4. (20 points) Let X_1, \dots, X_{10} be iid random samples taken from $N(\mu_1, \sigma_1^2)$ and Y_1, \dots, Y_{12} be iid random samples taken from $N(\mu_2, \sigma_2^2)$. Define \bar{X} and S_1^2 to be the sample mean and variance, respectively of X_1, \dots, X_{10} respectively and define \bar{Y} and S_2^2 similarly.
 - (a) State the distribution of each of \bar{X} , S_1^2 , \bar{Y} and S_2^2 .
 - (b) In each of the following questions, a pair of null hypothesis and alternative hypothesis is specified, where in each it is stated which parameters are known or unknown. In each case, provide a test for the stated hypotheses. Specify the rejection region (with numeric critical value) for a 0.05-level test. Each will involve a well known distribution. (Tables are provided for your reference.)
 - i. Suppose here $\sigma_1^2 = 5$ and μ_1 is unknown.

$$H_0: \mu_1 \le 2$$
 vs. $H_1: \mu_1 > 2$

ii. Here all μ_i and σ_i^2 (i = 1, 2) are unknown, but $\sigma_1^2 = \sigma_2^2$.

$$H_0: \mu_1 = \mu_2 \text{ vs. } H_1: \mu_1 \neq \mu_2$$

iii. Here μ_1 , σ_1^2 and σ_2^2 are unknown.

A. $H_0: \ \mu_1 = 2 \text{ vs. } H_1: \ \mu_1 \neq 2.$ B. $H_0: \ \sigma_1^2 \leq 5 \text{ vs. } H_1: \ \sigma_1^2 > 5$ C. $H_0: \ \sigma_1^2 \leq \sigma_2^2 \text{ vs. } H_1: \ \sigma_1^2 > \sigma_2^2$ D. $H_0: \ \sigma_1^2 = \sigma_2^2 \text{ vs. } H_1: \ \sigma_1^2 \neq \sigma_2^2$

- 5. (24 points) Consider a random sample Y_1, \ldots, Y_n from exponential distribution $f(y) = (1/\beta)e^{-y/\beta}$ for y > 0 ($\beta > 0$), a distribution with mean $\mu = \beta$ and variance $\sigma^2 = \beta^2$.
 - (a) Find the MLE of β . Show your derivation and be sure to justify that you have maximized the likelihood.
 - (b) Derive an **exact** 95% confidence interval for μ . (Hint: The variable $2\sum_{i=1}^{n} Y_i/\beta$ follows a well-known distribution. If you can't name this distribution, trade the points by using a letter to represent the distribution and define its quantiles. So that you can continue to do the following problems.)
 - (c) Derive an **exact** 95% confidence interval for σ^2 .
 - (d) Find the Cramer-Rao Lower bound for unbiased estimators of σ^2 .

- (e) An interesting property of the exponential distribution is that it is memoryless; that is $P(Y > s | Y > t) = P(Y > s t) = e^{-(s-t)/\beta}$. Call this quantity $g(\beta)$ where s > t and s and t are fixed.
 - i. Give the MLE of $g(\beta)$ and then give the approximate large sample distribution of this MLE.
 - ii. Find an approximate 95% large sample confidence interval for $g(\beta)$ by using the approximate distribution in the previous part, plus whatever other developments (explain them) that are needed.