DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS BASIC EXAM - STATISTICS TUESDAY, JANUARY 20, 2004

Work all five problems, each worth 20 points. Sixty points are needed to pass at the Master's level and seventy-five at the Ph.D. level.

1. Let X_1, \dots, X_n be a random sample from a Pareto distribution with p.d.f.

$$f(x,\theta) = 2\theta^2/x^3, x \ge \theta; 0, \text{ otherwise.}$$

Here, θ (> 0) is a parameter.

- (a) Find the MLE $\hat{\theta}$ of θ . What is the MLE of θ^2 ?
- (b) Define consistency of an estimator in general.
- (c) Find the method of moments estimator of θ . Is this estimator consistent? (You may use the weak law of large numbers.)
- 2. Let X_1, \dots, X_n be a random sample from a Bernoulli distribution with p.m.f.

$$f(x, \theta) = \theta^x (1 - \theta)^{1-x}, \ x = 0, 1; \ 0, \ \text{otherwise}.$$

Here, θ ($0 \le \theta \le 1$) is a parameter.

(a) Show that the sample variance $S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \overline{X})^2$ can be written as

$$S^{2} = \frac{T(X)}{n(n-1)} [n - T(\vec{X})].$$

where $T(\vec{X}) = \sum_{i=1}^{n} X_i$.

- (b) Let $\sigma^2(\theta) = \theta(1-\theta)$, the common variance of the X_i 's. Find the UMVUE of $\sigma^2(\theta)$ using (a), or otherwise. State carefully all the results you use.
- 3. Let X_1, \dots, X_{100} be i.i.d. Poisson(λ) random variables, where λ (> 0) is the mean as well as the variance of X_1 . Let \overline{X} denote the sample mean.
 - (a) Applying the central limit theorem to \overline{X} , find an approximate pivotal quantity for λ .
 - (b) Derive an approximate 95% confidence interval for λ in terms of \overline{X} .

4. Let X_1, \dots, X_n be a random sample from a normal distribution with mean μ and standard deviation σ , where both μ and σ are unknown. Derive the likelihood ratio test for testing

$$H_0: \mu = \mu_0$$
 against $H_1: \mu \neq \mu_0$,

where μ_0 is a given number. Specify the critical value and critical region for the test of size α .

5. Let X_1, \dots, X_{25} be a random sample from a normal distribution with an unknown mean μ and variance 1. Consider testing the hypotheses

$$H_0: \mu \leq 0$$
 against $H_1: \mu > 0$.

It is known that the UMP size 0.05 test rejects H_0 iff $5\bar{X} > 1.645$.

- (a) Explain what it means for the test to have size 0.05, and what it means to be UMP.
- (b) Construct the power function of the test, and calculate the power of the test at $\mu = 0.5$. Is the power function an increasing function of μ ? (Explain.)
- (c) What is the Type I error probability of the test at $\mu = 0$? Is this probability larger or smaller than the Type I error probability at $\mu = -1$? (Explain briefly.)
- (d) Now suppose we change the critical value 1.645 in the test to 1.96. Compute the size of the new test.