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Do five of the following seven problems. All problems carry equal weight.
Passing level: 75% with at least three substantially complete solutions.

1. (a) Let B be a real, 2× 2 matrix with eigenvalues β1 < −1 and β2 > 0,
and with assoicated eigenvectors v1 and v2. Let A be the 4 × 4 block
matrix

A =

(
−2I2 B
I2 02

)
,

where I2 and O2 are the 2× 2 identity and zero matrices, respectivelty.
Determine the (real) Jordan form of the exponential matrix etA, i.e
determine an expression of the form

etA = V etJV −1, (1)

where J is a 4 × 4 matrix in real Jordan form and V is a suitable
invertible 4× 4 matrix.

[A complete solution should give a detailed description of how the ma-
trices V, J , and etJ are derived from the given information about B
and the structure of A. You need not calculate V −1 and your answer
should be left in factorized form without multiplying out the various
matrix products in (1).]

(b) Describe the stable and unstable subspaces of the system y′ = Ay.

2. (a) Consider the damped and driven wave equation

∂2u

∂t2
+ 2γ

∂u

∂t
− ∂2u

∂x2
= cos t sin x , on 0 < x < π ,

with the boundary conditions u(0, t) = u(π, t) = 0. Assume that
0 < γ < 1. Formulate the initial value problem for this PDE and
solve it explicitly using the Fourier method.

(b) Determine the asymptotic behavior as t → +∞ of a general solution
u(x, t) to the initial value problem in (a).
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3. Consider the system
dx

dt
= Ax + q(x), (2)

where A is a real n× n matrix with distinct negative eigenvalues λi <
λi+1 for 1 ≤ i ≤ n−1, and q : Rn → Rn is a smooth, real-valued vector
field satisfying an estimate of the form

|q(x)| ≤ K|x|2

for all x ∈ Rn and some positive constant K; |x| = (
∑n

i=1 x2
i )

1
2 .

Show that there exist ro > 0 and an invertible, real n × n matrix V
such that if 0 < r ≤ ro the set

Σr = {x = V y : |y| ≤ r}

is a positively invariant set for (2), i.e. x(0) ∈ Σr implies that x(t) ∈ Σr

for all t ≥ 0.

[Your discussion should determine a value of ro in terms of K and var-
ious data obtained from the matrix A.]

4. Consider the nonlinear parabolic PDE,

∂u

∂t
=

∂2u

∂x2
− f ′(u) ( −∞ < x < +∞ , t > 0 )

where f(z) is a smooth convex function of z ∈ R with f ′(0) = 0. Prove
the uniqueness of solutions to the initial value problem in the following
sense:
If u1(x, t) and u2(x, t) are classical (sufficiently smooth) solutions that
vanish (sufficiently rapidly) as x → ±∞, and u1(x, 0) ≡ u2(x, 0) iden-
tically in x, then u1(x, t) ≡ u2(x, t) for all t > 0.

Hint: Use an “energy method” on the difference w = u1 − u2.
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5. Consider the planar system

dx

dt
=

4

π
arctan x− y (3)

dy

dt
= y − x3.

(a) Determine all rest points and the local behavior of solutions in a
small neighborhoods of each rest point.
(b) Determine whether the system admits any heteroclinic, homoclinic,
or periodic solutions; give a proof of the existence of any of these so-
lutions that do occur, and use this analysis to sketch the global phase
portrait of (3).

6. (a) Define the Sobolev space H1(Ω), for a bounded domain Ω ⊂ Rn

with smooth boundary ∂Ω. Show that if α 6= 0, given any f ∈ L2(Ω),
there exists a unique weak solution u ∈ H1(Ω) to the elliptic boundary
value problem

−∆u + α2u = f(x) in Ω,
∂u

∂N
= 0 on ∂Ω ,

where N denotes the outward unit normal on Ω.
(b) Explain how the boundary condition on ∂Ω is incorporated in the
weak formulation used in part (b).
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7. (a) Determine an expression for the general solution y(t) of the linear
system

dy

dt
=

 0 1 0
0 0 1
−2 1 2

 y, (4)

as a linear combination of expressions involving the eigenvectors and
eigenvalues of the coefficient matrix of the system
(b) If y(t) is a solution of (4), define x(t) = (p(t), q(t)) by

p(t) =
y2(t)

y1(t)
, q(t) =

y3(t)

y1(t)
.

Show that x(t) is the solution of a (nonlinear) system two autonomous
equations

dx

dt
= f(x) (5)

for some vector field f : R2 → R2.
(c) Describe how the growth and decay properties of various solutions
y(t) of the linear system (4) determine the global phase plane of solu-
tions x(t) of the system (5). In particular, show how the system (4) for
y(t) determines all rest points and all heteroclinic solutions connecting
pairs of rest points in the phase plane of (5).

Hint. The behavior of the span, {cy(t) : c ∈ R}, of a solution y(t) of
(4) determines the trajectory of a single solution x(t) of (5).
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