Your Name :

Department of Mathematics and Statistics
University of Massachusetts Amherst

Advanced Qualifying Exam- Differential Equations.

Monday August 25th, 2008

10am to 1pm - LGRT 1234

This exam consists of seven (7) problems all carrying equal weight. You must do five (5) of them. Passing level: 75% with at least three (3) substantially complete solutions. Please justify all your steps properly by indicating (or stating) the result you are using. Please write each problem clearly and neatly in a separate page.
(1) Consider the initial value problem

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0 \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=p(x) \\
u_{t}(x, 0)=q(x)
\end{array}\right.
$$

where $p(x), q(x)$ are known given smooth functions and $c>0$.
(a) By direct calculation show that the D'Alembert formula gives the solution to the problem above; i.e verify all identities above are satisfied.
(b) Denote by χ the function of one variable

$$
\chi(x)= \begin{cases}1 & \text { if }|x| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that $p(x)=\chi(x)$ and $q(x)=0$. Show then that for each fixed $t>0$, the solution $u(x, t)$ obtained explicitly from the D'Alembert formula vanishes on the two half intervals (for t fixed):

$$
x \in(-\infty,-(1+c t)) \quad x \in(1+c t, \infty)
$$

(2) Let $f(x)$ be the vector field on $x \in \mathbb{R}^{2}$

$$
f(x)=\binom{H_{x_{2}}(x)}{-H_{x_{1}}(x)} \quad x=\left(x_{1}, x_{2}\right)
$$

where $H(x)$ is a given smooth function of x; and let $x(t, \xi)$ be the solution of

$$
\frac{d x}{d t}=f(x), \quad x(0, \xi)=\xi
$$

for each initial condition in $\xi \in \mathbb{R}^{2}$.
Let $B_{0}=\left\{\xi: \xi_{1}^{2}+\xi_{2}^{2} \leq 1\right\}$ and define $B(t)=\left\{x(t, \xi): \xi \in B_{0}\right\}$. Show that

$$
\iint_{B(t)} d x=\pi \quad \text { for all } t
$$

i.e., the area of $B(t)$ is constant in time. (Hint: Consider the (linearized) system of ODE's satisfied by the Jacobian $x_{\xi}(t, \xi)$ of the solution of the original initial value problem with respect to the initial conditions.)
(3) (a) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary. (Recall a domain is a connected open subset of \mathbb{R}^{n})

Assume that

$$
u \in C^{2}(\Omega \times(0, \infty)) \cap C^{1}(\bar{\Omega} \times[0, \infty))
$$

is a solution of

$$
\left\{\begin{array}{l}
u_{t t}=c^{2} \Delta u \\
u(x, t)=0 \quad \text { for } x \in \partial \Omega, t \geq 0
\end{array}\right.
$$

where c is a constant.
Show that the energy

$$
E(t):=\frac{1}{2} \int_{\Omega}\left(u_{t}^{2}+c^{2}|\nabla u|^{2}\right) d x
$$

is conserved; i.e. $E(t)=E(0)$ for all $t \geq 0$.
(b) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary. Use part (a) to show uniqueness of the solution for the non-homogeneous boundary/initial value problem wave

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=f(x, t) \quad x \in \Omega, t>0 \\
u(x, t)=g(x, t) \quad \text { on } \partial \Omega, t \geq 0 \\
u(x, 0)=h(x), \quad u_{t}(x, 0)=k(x) \quad x \in \Omega
\end{array}\right.
$$

where f, g, h, k are given smooth functions and any solution u is assumed to belong to the space $C^{2}(\Omega \times(0, \infty)) \cap C^{1}(\bar{\Omega} \times[0, \infty))$
(4) Consider the 1-parameter family of equations

$$
(*) \begin{cases}x^{\prime} & =y^{3}-y-x \\ y^{\prime} & =x-A\end{cases}
$$

(a) When $A=0$ give a complete and rigorous analysis of the global behavior of all solutions to $(*)$, paying particular attention the behaviors of solutions near rest points, and the presence of any periodic, homoclinic, or heteroclinic orbits, if any such orbits exist. A phase plane sketch of the various behaviors that occur must be justified appropriate analytical calculations and arguments. Useful techniques include linearization, invariant regions, Liapunov functions, and the stable/unstable manifolds.
(b) How would you expect the phase planes of $(*)$ to change as A is increased from $A=0$ to $A=1$? Your answer may be left in the form of a conjecture obtained from information you are able to calculate for particular values of A; a complete and rigorous justification is not required.
(5) Let $\Omega \subset \mathbb{R}^{n}, n \geq 3$ be a bounded domain with smooth boundary. Let $G(x, y)$ denote the Green's function for this domain. We know that for fixed $x \in \Omega$

$$
G(x, y):=K(y-x)-\omega_{x}(y)
$$

where $\omega_{x}(y)$ satisfies

$$
\left\{\begin{array}{l}
\Delta_{y} \omega_{x}=0 \quad \text { in } \Omega, \\
\omega_{x}(y)=K(y-x) \quad \text { for } y \in \partial \Omega
\end{array}\right.
$$

and

$$
K(x):=\frac{1}{n(n-2) \alpha(n)} \frac{1}{|x|^{n-2}}, \quad \alpha(n)=\text { volume of unit ball in } \mathbb{R}^{n}
$$

for $x \in \mathbb{R}^{n}, x \neq 0$ is the fundamental solution of the Laplace's equation.
Thus $y \rightarrow G(x, y)$ is harmonic for $y \in \Omega, y \neq x$ and $G(x, y)=0$ for $y \in \partial \Omega$. Moreover, $G(x, y)=G(y, x)$ (you do not need to prove this).

Use the maximum/minimum principle to show that $G(x, y)>0$ for all $x, y \in \Omega$ with $x \neq y$.
(6) (a) Determine the variation of parameters solution to

$$
x^{\prime}(t)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) x(t)+\binom{f_{1}(t)}{f_{2}(t)} \quad x(0)=\binom{a}{b}
$$

where $f_{1}(t)$ and $f_{2}(t)$ are continuous and a, b are constants.
(b) Determine the first two coefficients $X_{0}(t)$ and $X_{1}(t)$ in the Taylor expansion

$$
\sum_{n=0}^{\infty} \frac{\varepsilon^{n}}{n!} X_{n}(t)
$$

of the exact solution $x(t, \varepsilon)$ of

$$
x^{\prime}=\left(\begin{array}{cc}
0 & -1 \\
1 & \varepsilon \sin t \cos t
\end{array}\right) x \quad x(0)=\binom{a}{b}
$$

(c) Viewing (\dagger) as a linear periodic system with a 2π-periodic coefficient matrix, use the first order approximation $x_{1}(t, \varepsilon)=X_{0}(t)+\varepsilon X_{1}(t)$ to the exact solution $x(t, \varepsilon)$ of (\dagger) to obtain an approximation to the system's Floquet multipliers, and use this calculation to formulate a conjecture about the asymptotic stability of the exact solution $x(t, \varepsilon)$ for sufficiently small $\varepsilon \neq 0$. (Hints: Use $x_{1}(t, \varepsilon)$ to approximate each of the columns of the fundamental matrix solution $\Phi(t, \varepsilon)$ with $\Phi(0, \varepsilon)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ for small ε; also, $\int_{0}^{2 \pi} \sin ^{2} t \cos ^{2} t d t=\pi / 4$.)
(7) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary. Define

$$
\lambda_{1}=\lambda_{1}(\Omega):=\inf _{u \in C_{c}^{\infty}(\Omega), u \neq 0} \frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega}|u|^{2} d x}
$$

where $C_{c}^{\infty}(\Omega)$ is the set of C^{∞} functions whose support is a compact subset in Ω.
(a) Prove the Poincaré inequality: i.e for $u \in C_{c}^{\infty}(\Omega)$ and $1 \leq p<\infty$

$$
\|u\|_{L^{p}} \leq C\|\nabla u\|_{L^{p}}
$$

where $C>0$ is a constant depending possibly on Ω and p but independent of u. Deduce from it that $\lambda_{1}>0$. (Hints. Assume $\Omega \subset[-M, M]^{n}$; write $u(x)=\frac{1}{2}\left\{\int_{-M}^{x} \partial_{1} u\left(y, x_{2}, \ldots x_{n}\right) d y-\right.$ $\left.\left.\int_{x}^{M} \partial_{1} u\left(y, x_{2}, \ldots x_{n}\right) d y\right\}(w h y ?)\right)$.
(b) Prove that for all $f \in L^{2}(\Omega)$ and for all constants $\gamma>-\lambda_{1}$, there exists a weak solution $u \in H_{0}^{1}(\Omega)$ of

$$
\left\{\begin{array}{rc}
-\Delta u+\gamma u=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

