Department of Mathematics and Statistics
University of Massachusetts

ADVANCED EXAM - DIFFERENTIAL EQUATIONS August 26, 2003

Do five of the following problems. All problems carry equal weight.
Passing level: 75% with at least three substantially complete solutions.

PROBLEM 1

The equation for a vibrating string with interval damping is

$$
\begin{aligned}
& u_{t t}=u_{x x}+\in u_{t x x}, \text { for } 0<x<1, t>0 \\
& u(0, t)=u(1, t)=0
\end{aligned}
$$

where $\in>0$ is constant.
(a) Show that the energy

$$
E(t)=\frac{1}{2} \int_{0}^{1}\left(u_{t}^{2}+u_{x}^{2}\right) d x
$$

is decreasing in time.
(b) Show that there is at most one classical solution to the IBVP with

$$
u(x, 0)=u_{0}(x)
$$

PROBLEM 2

Let $b: \mathbb{R}^{r} \times \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{r}$ a bounded, continuous function satisfying

$$
\left|b\left(x_{1}, y\right)-b\left(x_{2}, y\right)\right| \leq K\left|x_{1}-x_{2}\right| \text { for all } x_{1}, x_{2} \in \mathbb{R}^{r}
$$

and K is a constant independent of y. Let $\xi:[0, \infty) \rightarrow \mathbb{R}^{\ell}$ a bounded and continuous function such that the following limit exists, uniformly in x :

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} b(x, \xi(t)) d t:=\bar{b}(x)
$$

Show that
(a) \bar{b} is a Lipschitz function with Lipschitz constant K.
(b) If $X^{\varepsilon}=X^{\varepsilon}(t)$ solves

$$
X^{\varepsilon^{\prime}}(t)=b\left(X^{\varepsilon}(t), \xi\left(\frac{t}{\varepsilon}\right)\right) \quad, \quad X^{\varepsilon}(0)=x
$$

and $\bar{x}=\bar{x}(t)$ solves

$$
\overline{x^{\prime}}(t)=\bar{b}(\bar{x}(t)), \quad \bar{x}(0)=x
$$

Then

$$
\max _{t=\left[0, T^{\prime}\right]}\left|X^{\varepsilon}(t)-\bar{x}(t)\right| \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

on any finite interval $I=[0, T]$

PROBLEM 3

(a) Let $u(x, t)$ be a smooth solution of $u_{t t}=c^{2} \Delta u$ in three dimensions, $x=\left(x_{1}, x_{2}, x_{3}\right)$, with initial data $u(x, 0)=f(x), u_{t}(x, 0)=g(x)$. For each fixed x, let

$$
I(r, t)=\frac{1}{4 \pi} \int_{|\xi|=1} u(x+r \xi, t) d \xi
$$

be the spherical mean of u over a sphere of radius r centered at x. Show that for each fixed x, $I(r, t)$ satisfies the radially symmetric wave equation in three dimensions, $I_{t t}=c^{2} \frac{1}{r^{2}}\left(r^{2} I_{r}\right)_{r}$.
(b) Find the differential equation satisfied by $J(r, t)=r I(r, t)$, and use this equation to represent the solution $u(x, t)$ in terms of the initial data $f(x)$ and $g(x)$.

PROBLEM 4

(a) Suppose that $f(u, v)$ and $g(u, v)$ are smooth functions of two real variables, and that $f_{v}(u, v)<0$ and $g_{u}(u, v)<0$ for all (u, v). Show that if $\left(u_{k}(t), v_{k}(t)\right), k=1,2$ are two solutions of the initial value problem

$$
\begin{align*}
u^{\prime} & =f(u, v) \tag{1}\\
v^{\prime} & =g(u, v)
\end{align*}
$$

and that if $w(t)=u_{1}(t)-u_{2}(t)$ and $z(t)=v_{2}(t)-v_{1}(t)$ are both positive (resp. both negative) at time $t=0$, then $w(t)$ and $z(t)$ are both positive (resp. both negative) for all times $t \geq 0$.
(b) Show that (1) cannot have a nonconstant, periodic solution. (Hint: assume to the contrary that $\left(u_{1}(t), v_{1}(t)\right)$ is such a solution with minimal period $T>0$. Assume that the solutions parametrized so that $u_{1}(0)$ is the maximum of $u_{1}(t)$ and that $\left(u_{2}(t), v_{2}(t)\right)=\left(u_{1}(t+\tau), v_{1}(t+\tau)\right)$ where $u_{1}(\tau)$ is the minimum value of $u_{1}(t)$ on $0 \leq t \leq T$.)

PROBLEM 5

Consider the equation

$$
\begin{cases}u_{t}=u_{x x}-u \quad & x \in(0,1), \quad t>0 \\ u(x, 0)=f(x) \quad x \in(0,1) \\ u(0, t)=u(1, t)=0 \quad, \quad t \geq 0\end{cases}
$$

(a) Prove that if u is a smooth solution of (1) then the maximum and minimum values of u for $0 \leq x \leq 1,0 \leq t \leq T<\infty$ are attained either at $\{t=0\}\{x=0\}$, or $\{x=1\}$.
(b) Study the asymptotic behavior of the (smooth) solution u as $t \rightarrow \infty$.

PROBLEM 6

Consider the Sobolev space $H^{S}\left(\mathbb{R}^{n}\right)$, where $s \in \mathbb{R}$ and the space $S\left(\mathbb{R}^{n}\right)$ of rapidly decaying smooth functions.
(a) Prove that if $2 S>n$ then there is a constant C depending only on such that

$$
|u(x)| \leq C\|u\|_{s}, \quad x \in \mathbb{R}^{n}
$$

for all $u \in S\left(\mathbb{R}^{n}\right)$.
(b) Using (a) prove that any function $u \in H^{s}\left(\mathbb{R}^{n}\right)$ can be identified almost everywhere (with respect to the Lebesgue measure) with a bounded continuous function.

