DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS ADVANCED EXAM - DIFFERENTIAL EQUATIONS MONDAY, AUGUST 28, 2000

Do five of the following problems. All problems carry equal weight. Passing level: 75% with at least three substantially complete solutions.

1. a) Let A be a real, symmetric $n \times n$ matrix with negative eigenvalues $\lambda_{1}, \ldots \lambda_{n}, \lambda_{i}<-p<0, i=1, \ldots, n$ for some $p>0$. Prove that every solution $u(t)$ of $u^{\prime}=A u$ satisfies

$$
|u(t)| \leq H e^{-p t}|u(0)|
$$

for some H depending only on A; here $|\cdot|$ is the Euclidean norm on \mathbb{R}^{n}. (Prove the result: do not simply cite a theorem).
b) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is smooth and satisfies $|f(u)| \leq k|u|^{2}$ as $|u| \rightarrow 0$. Construct a Liapunov function $V(u)$ for solutions of

$$
u^{\prime}=A u+f(u)
$$

where A is as in a), on some small neighborhood of $u=0$. Prove that this function strictly decreases on nonconstant solutions.
2. Consider the family of solutions $u_{\epsilon}(x)$ to the (infinite-domain) boundaryvalue problem:

$$
\left\{\begin{array}{l}
-\frac{d^{2} u_{\epsilon}}{d x^{2}}+c^{2} u_{\epsilon}=f_{\epsilon}(x) \quad(\epsilon>0) \\
\lim _{x \rightarrow \pm \infty} u_{\epsilon}(x)=0,
\end{array}\right.
$$

where $f_{\epsilon}(x)=\frac{1}{\epsilon} F\left(\frac{x}{\epsilon}\right)$ and $F(x)$ satisfies (i) $F(x) \geq 0$, (ii) $F(x)=0$ for $|x| \geq 1$, and (iii) $\int_{-1}^{+1} F(x) d x=1$.
a) Determine the limit solution $u_{*}(x)=\lim _{\epsilon \rightarrow 0+} u_{\epsilon}(x)$
b) What equation does the function

$$
v(x)=\int_{-\infty}^{+\infty} u_{*}(x-y) \phi(y) d y
$$

satisfy, given an arbitrary continuous and integrable function ϕ ?
3. Let $\phi: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a flow on \mathbb{R}^{n}, so that $\phi_{t}(x)$ is the trajectory at time t with initial data x.
a) Prove that if the ω-limit set $\omega\left(\phi_{t}(x)\right)$ of a trajectory $\phi_{t}(x)$ lies in a bounded subset of \mathbb{R}^{n} then $\omega\left(\phi_{t}(x)\right)$ is closed.
b) Prove that if $p \in \omega\left(\phi_{t}(x)\right)$ then $\phi_{t}(p) \in \omega\left(\phi_{t}(x)\right)$ for each t.
4. Consider the PDE for a vibrating string with a particular damping term:

$$
\begin{cases}\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=\mu \frac{\partial^{3} u}{\partial x^{2} \partial t} \\ u(0, t)=0=u(1, t), & (0<x<1) \\ =0=u\end{cases}
$$

with a positive coefficient μ. Show that the initial-boundary value problem for this equation has a unique solution. Hint: Find an energy function E and verify that $\left.\frac{d E}{d t} \leq 0\right]$.
5. a) Demonstrate that the solution to the variational problem

$$
\min \int_{\Omega}|\nabla u|^{2} d x \text { subject to } \int_{\Omega} u^{2} d x=1, u \in H_{0}^{1}(\Omega)
$$

coincides with the first eigenfunction $u=\varphi_{1}$ for $-\Delta$ on Ω; namely,

$$
\begin{array}{ll}
-\Delta \varphi_{1}=\lambda_{1} \varphi_{1} & \text { in } \Omega \subset R^{n}, \\
\varphi_{1}=0 & \text { on } \partial \Omega,
\end{array}
$$

and that the minimum is attained when $u=\varphi_{1}$, where φ_{1} is the principal eigenfunction. Assume Ω is a bounded domain with smooth boundary.
b) Use the characterization in (a) to show that if the domain Ω is a strict subdomain of another domain $\tilde{\Omega}$, then

$$
\lambda_{1}(\Omega) \geq \lambda_{1}(\tilde{\Omega})
$$

where these are the first eigenvalues for each domain.
6. Let $(x(t), y(t))$ be a solution of the system

$$
\begin{aligned}
& x^{\prime}=x((x-1)(2-x)-y) \\
& y^{\prime}=y\left(-d-(y-c)^{2}+x\right)
\end{aligned}
$$

with positive initial data $x(0)>0, y(0)>0$. Here c, d are positive constants.
a) Prove that the solution remains uniformly bounded, $0 \leq x(t) \leq$ $M, 0 \leq y(t) \leq N$ for all $t \geq 0$ and some $M, N>0$ (depending on the data).
b) Suppose that the equation

$$
x=d+[(x-1)(2-x)-c]^{2}
$$

has NO real roots. Show that every solution $(x(t), y(t))$ with positive initial data tends to a rest point on the nonnegative x-axis as $t \rightarrow+\infty$.
7. a) State and prove the classical maximum principle for the parabolic initial-boundary value problem

$$
\begin{cases}u_{t}=\Delta u+a u \\ u(0, t)=u(\pi, t)=0 \\ u(x, 0)=u_{0}(x) & (x, t) \in(0, \pi) \times x(0, T) \\ \hline\end{cases}
$$

when $a<0$.
b) When $a>1$, give a counterexample to the statement in part (a).

