University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry January 2012

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

1. Let $F: \mathbb{P}^{2} \rightarrow \mathbb{P}^{4}$ be the map

$$
F([x: y: z])=\left[x^{2}: x y: x z+y^{2}: y z: x^{2}+y^{2}+z^{2}\right] .
$$

(a) Prove that F is an embedding.
(b) Show how F may be used to define an embedding $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{R}^{4}$.
2. Let G be a Lie group.
(a) Let $\varphi: G \rightarrow G$ be a Lie group automorphism. Prove that φ_{*} maps leftinvariant vector fields on G to left-invariant vector fields on G.
(b) Let $\psi: G \rightarrow G$ be the map $\psi(g)=g^{-1}$. Prove that ψ_{*} maps left-invariant vector fields on G to right-invariant vector fields on G.
3. Let $S^{2 n-1}$ be the unit sphere in $\mathbb{C}^{n}=\mathbb{R}^{2 n}$, i.e. the set of $\left(z_{1}, \ldots, z_{n}\right)$ such that $\sum\left|z_{i}\right|^{2}=1$. Consider the group $\Gamma=\left\{1, \omega, \omega^{2}\right\}$, where $\omega=e^{2 \pi i / 3}$. Let M be the quotient of $S^{2 n-1}$ by the action of Γ given by

$$
\omega\left(z_{1}, \ldots, z_{n}\right)=\left(\omega z_{1}, \ldots, \omega z_{n}\right)
$$

(a) Show that M is smooth orientable manifold.
(b) Show that the homomorphism $H_{d R}^{k}(M) \rightarrow H_{d R}^{k}\left(S^{2 n-1}\right)$ is injective, with image the Γ-invariants $H_{d R}^{k}\left(S^{2 n-1}\right)^{\Gamma}$.
4. Let M and N be manifolds. Prove or disprove the following statements:
(a) $M \times N$ is orientable if and only if M and N are orientable.
(b) $M \times N$ is parallelizable if and only if M and N are parallelizable.
5. Let $\pi: E \rightarrow M$ be a vector bundle and $F \subseteq E$ a subbundle. Prove that there exists a subbundle $F^{\prime} \subseteq E$ such that $F \oplus F^{\prime} \cong E$. Here \cong means isomorphism of vector bundles.
6. Let $\alpha=y d x+d z$, a 1-form on \mathbb{R}^{3}. Prove or disprove the following statements:
(a) For any $p \in \mathbb{R}^{3}$, there exists an immersion $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ with $f(0)=p$ and $f^{*} \alpha=0$.
(b) For any $p \in \mathbb{R}^{3}$, there exists an immersion $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with $f(0)=p$ and $f^{*} \alpha=0$.
7. Take $k>0$, and consider the metric

$$
g=d r^{2}+k^{2} r^{2} d \theta^{2}
$$

on $M=\mathbb{R}^{2} \backslash\{(0,0)\}$ in polar coordinates (recall that although the function θ is not well-defined on all of M, its differential $d \theta$ is).
(a) Show that (M, g) is flat.
(b) Write differential equations for parallel transport around the loop $r=1$, $\theta=t, 0 \leq t \leq 2 \pi$.
8. Let (M, g) be an n-dimensional, compact, oriented manifold without boundary. Let Ω_{g} denote the volume element of (M, g). Given a vector field X on M, its divergence, $\operatorname{div}(X)$, is the C^{∞} function on M defined by the identity:

$$
L_{X}\left(\Omega_{g}\right)=\operatorname{div}(X) \Omega_{g}
$$

where L_{X} denotes the Lie derivative with respect to X.
(a) Prove that $\int_{M} \operatorname{div}(X) \Omega_{g}=0$.
(b) Express $\operatorname{div}(X)$ in local coordinates.

