University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry January 2012

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. *Passing standard:* 70% with three problems essentially complete. Justify all your answers.

1. Let $F: \mathbb{P}^2 \to \mathbb{P}^4$ be the map

$$F([x:y:z]) = [x^2:xy:xz + y^2:yz:x^2 + y^2 + z^2].$$

- (a) Prove that F is an embedding.
- (b) Show how F may be used to define an embedding $\varphi \colon \mathbb{P}^2 \to \mathbb{R}^4$.
- 2. Let G be a Lie group.
 - (a) Let $\varphi \colon G \to G$ be a Lie group automorphism. Prove that φ_* maps left-invariant vector fields on G to left-invariant vector fields on G.
 - (b) Let $\psi: G \to G$ be the map $\psi(g) = g^{-1}$. Prove that ψ_* maps left-invariant vector fields on G to right-invariant vector fields on G.
- 3. Let S^{2n-1} be the unit sphere in $\mathbb{C}^n = \mathbb{R}^{2n}$, i.e. the set of (z_1, \ldots, z_n) such that $\sum |z_i|^2 = 1$. Consider the group $\Gamma = \{1, \omega, \omega^2\}$, where $\omega = e^{2\pi i/3}$. Let M be the quotient of S^{2n-1} by the action of Γ given by

$$\omega(z_1,\ldots,z_n)=(\omega z_1,\ldots,\omega z_n).$$

- (a) Show that M is smooth orientable manifold.
- (b) Show that the homomorphism $H^k_{dR}(M) \to H^k_{dR}(S^{2n-1})$ is injective, with image the Γ -invariants $H^k_{dR}(S^{2n-1})^{\Gamma}$.
- 4. Let M and N be manifolds. Prove or disprove the following statements:
 - (a) $M \times N$ is orientable if and only if M and N are orientable.
 - (b) $M \times N$ is parallelizable if and only if M and N are parallelizable.
- 5. Let $\pi: E \to M$ be a vector bundle and $F \subseteq E$ a subbundle. Prove that there exists a subbundle $F' \subseteq E$ such that $F \oplus F' \cong E$. Here \cong means isomorphism of vector bundles.

- 6. Let $\alpha = y \, dx + dz$, a 1-form on \mathbb{R}^3 . Prove or disprove the following statements:
 - (a) For any $p \in \mathbb{R}^3$, there exists an immersion $f \colon \mathbb{R} \to \mathbb{R}^3$ with f(0) = p and $f^* \alpha = 0$.
 - (b) For any $p \in \mathbb{R}^3$, there exists an immersion $f \colon \mathbb{R}^2 \to \mathbb{R}^3$ with f(0) = p and $f^* \alpha = 0$.
- 7. Take k > 0, and consider the metric

$$g = dr^2 + k^2 r^2 d\theta^2$$

on $M = \mathbb{R}^2 \setminus \{(0,0)\}$ in polar coordinates (recall that although the function θ is not well-defined on all of M, its differential $d\theta$ is).

- (a) Show that (M, g) is flat.
- (b) Write differential equations for parallel transport around the loop r = 1, $\theta = t$, $0 \le t \le 2\pi$.
- 8. Let (M, g) be an *n*-dimensional, compact, oriented manifold without boundary. Let Ω_g denote the volume element of (M, g). Given a vector field X on M, its *divergence*, div(X), is the C^{∞} function on M defined by the identity:

$$L_X(\Omega_q) = \operatorname{div}(X) \Omega_q,$$

where L_X denotes the Lie derivative with respect to X.

- (a) Prove that $\int_M \operatorname{div}(X) \Omega_g = 0.$
- (b) Express $\operatorname{div}(X)$ in local coordinates.