University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry
 January 10, 2011

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

Problem 1. Prove or disprove the following statements:
a) Let M be an n-dimensional compact manifold and $f: M \rightarrow \mathbb{R}^{n}$ a smooth map. Then f has a critical point.
b) Let M and N be smooth manifolds and $f: M \rightarrow N$ a smooth map. Suppose there exists a hypersurface $Z \subset M$ such that the restriction of f to $M \backslash Z$ is a submersion. Then f is a submersion.

Problem 2. a) Let $\alpha_{i}, i=1,2, \cdots, m$, be $C^{\infty} 1$-forms on an n-dimensional manifold, $n \geq m$, which are linearly independent pointwise. Show that for any 1 -forms $\beta_{i}, i=1,2, \cdots, m$, if

$$
\sum_{i=1}^{m} \alpha_{i} \wedge \beta_{i}=0
$$

then each β_{i} lies in the span of $\alpha_{1}, \cdots, \alpha_{m}$.
b) Let α be a C^{∞} 1-form on a smooth manifold M and suppose there exists a nowhere zero C^{∞} function f on M such that $d(f \alpha)=0$. Prove that $\alpha \wedge d \alpha=0$

Problem 3. Let M, N, and X be smooth manifolds and $f: M \rightarrow X$ and $g: N \rightarrow X$ smooth maps. Let

$$
Z:=\{(p, q) \in M \times N: f(p)=g(q)\}
$$

Suppose that for each $(p, q) \in Z$,

$$
f_{*, p}\left(T_{p}(M)\right)+g_{*, q}\left(T_{q}(N)\right)=T_{f(p)}(X)
$$

Prove that Z is an embedded submanifold of $M \times N$.

Problem 4. Let M be a smooth manifold and $X \in \mathcal{X}(M)$, a C^{∞} vector field on M. We define the support of the vector field X as the closure of the set

$$
\{p \in M: X(p) \neq 0\}
$$

Prove that a C^{∞} vector field X with compact support is complete. Give a counterexample that shows that the statement is false without the assumption that X has compact support.

Problem 5. We define a connection on \mathbb{R}^{3} by setting

$$
\nabla_{\partial_{i}}\left(\partial_{j}\right):=\sum_{k=1}^{3} \Gamma_{i j}^{k} \partial_{k} ; \quad \partial_{i}=\partial / \partial x_{i}
$$

where

$$
\Gamma_{12}^{3}=\Gamma_{23}^{1}=\Gamma_{31}^{2}=1, \quad \Gamma_{21}^{3}=\Gamma_{32}^{1}=\Gamma_{13}^{2}=-1
$$

and all other Christoffel symbols are zero.
a) Show that this connection is compatible with the Euclidean metric.
b) Determine the geodesics of this connection.
c) Is ∇ the Riemannian (Levi-Civita) connection for the Euclidean metric? Explain your answer.

Problem 6. We denote by G the set of 3×3 real matrices:

$$
G:=\left\{\left(\begin{array}{ccc}
1 & 0 & 0 \\
x & z & 0 \\
y & 0 & z
\end{array}\right): z>0\right\} .
$$

a) Show that G is a Lie subgroup of $G L(3, \mathbb{R})$.
b) Describe the Lie algebra of G as a subalgebra of $\mathfrak{g l}(3, \mathbb{R})$.
c) Find the one-parameter subgroups of G.

Problem 7. Give examples of the following or prove that they cannot exist:
a) A diffeomorphism $F: S^{4} \rightarrow S^{2} \times S^{2}$.
b) A non-orientable embedded submanifold of an orientable manifold.
c) Vector bundles E, F and G over a manifold M such that

$$
E \oplus F \cong E \oplus G
$$

but $F \not \approx G$.

Problem 8. Let M be an open set of \mathbb{R}^{2} with the Riemannian metric whose matrix in the standard frame $\partial_{x}, \partial_{y}$ is given by:

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \lambda^{2}(x, y)
\end{array}\right)
$$

where λ is a nowhere-zero, smooth function on M.
a) Compute $\operatorname{grad}(f)$, for $f \in C^{\infty}(M)$ in terms of the standard frame $\partial_{x}, \partial_{y}$.
b) Compute the Gaussian curvature of M.
c) Find the differential equations for a geodesic in M.

