University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry August 2008

Do 5 out of the following 7 problems. Indicate clearly which questions you want graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

1. a) Show that

$$
M=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1} x_{2}+x_{3} x_{4}=0, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}
$$

is a smooth submanifold of \mathbb{R}^{4}.
b) Show that M is orientable.
c) Find all critical points of the restriction of the coordinate function x_{1} to M.
2. Let M, N be smooth manifolds and $F: M \rightarrow N$ a submersion. Let Δ be a smooth k-dimensional distribution in N and define:

$$
F^{*}(\Delta)_{p}:=\left(F_{*, p}\right)^{-1}\left(\Delta_{F(p)}\right) \subset T_{p}(M)
$$

a) Prove that $F^{*}(\Delta)$ is a smooth distribution in M. What is the dimension of $F^{*}(\Delta)$?
b) Prove that $F^{*}(\Delta)$ is integrable (involutive) if and only if Δ is integrable (involutive).
c) Give an example to show that a) may fail if F is not a submersion.
3. A $2 n$-dimensional manifold is called symplectic if there exists a closed 2 form ω for which the nth exterior power $\omega \wedge \cdots \wedge \omega$ does not vanish at any point. Prove that
a) if M is symplectic with symplectic form ω, then $X \mapsto \omega(X,-)$ defines an isomorphism of vector bundles $T M \rightarrow T^{*} M$.
b) Any orientable, 2-dimensional manifold is symplectic.
c) For any $n \geq 2$, the sphere $S^{2 n}$ is not symplectic but the torus $T^{2 n}$ is.
4. Let D be the unit disc in \mathbb{R}^{2} with the Euclidean metric, and let Δ be the Laplacian with respect to the metric.
a) Show that for any smooth functions f, g on D,

$$
\int_{\partial D}\left(f \frac{\partial g}{\partial r}-g \frac{\partial f}{\partial r}\right)=\int_{D}(f \Delta g-g \Delta f) .
$$

(here $\partial / \partial r$ is the outward-pointing radial unit vector field, defined on $D \backslash\{(0,0)\})$
b) State and prove the generalization of a) to an arbitrary Riemannian manifold.
5. a) Give an example of a non-complete vector field on a manifold.
b) Show that any left-invariant vector field on a Lie group is complete.
6. Let (M, g) be a Riemannian manifold and let ∇ denote the Riemannian connection. Given a one-form $\alpha \in \mathcal{A}^{1}(M)$ and a vector field $X \in \mathcal{T}(M)$ define $\nabla_{X} \alpha$ by

$$
\nabla_{X} \alpha(Y):=X(\alpha(Y))-\alpha\left(\nabla_{X} Y\right)
$$

a) Prove that $\nabla_{X} \alpha \in \mathcal{A}^{1}(M)$.
b) Prove that

$$
\nabla_{X}(f \alpha)=(X f) \alpha+f \nabla_{X} \alpha ; \quad f \in C^{\infty}(M)
$$

c) Suppose $f \in C^{\infty}(M)$ and $p \in M$ is a critical point of f. Compute $\nabla_{X}(d f)(p)$ in local coordinates $\left(U, x_{1}, \ldots, x_{n}\right)$ around p.
7. Let $M=(0, \pi / 2) \times \mathbb{R} \subset \mathbb{R}^{2}$ with the Riemannian metric

$$
d s^{2}=d x^{2}+\cos ^{2}(x) d y^{2}
$$

a) Compute the Gaussian curvature of $\left(M, d s^{2}\right)$.
b) Write the geodesic equations for $\left(M, d s^{2}\right)$.

