University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry January 18, 2005

Do 5 out of the following 7 questions. Indicate clearly which questions you want to have graded. *Passing standard:* 70% with three problems essentially complete. **Justify all your answers.**

Problem 1. Let M be a manifold, $f: M \to \mathbb{R}$ be a smooth map and $p \in M$ a critical point of f.

- a) Define what is meant by the *Hessian* of f at p. If your definition involves choices, show that the end-result is independent of those choices.
- **b)** Let $f: S^n \to \mathbb{R}$ be the map

$$f(x) = \sum_{j=1}^{n+1} j \, x_j^2 \; ; \quad x = (x_1, \dots, x_{n+1}) \in S^n \subset \mathbb{R}^{n+1} \, .$$

Find the critical points of F.

c) Compute the Hessian, Hess(f), at each of the critical points obtained above.

Problem 2. Let $H = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ with the Lie group structure defined by the product:

$$(x, y) * (x', y') = (x + x', yy').$$

- a) Find a basis of left-invariant 1-forms on H and define a left-invariant metric on H.
- b) Compute the Gaussian curvature of the metric defined in a).
- c) Compute the geodesics of H with respect to the metric defined in a).

Problem 3. Let $f : \mathbb{RP}^1 \to \mathbb{RP}^n$ be defined by

$$[s:t] \mapsto [s^n: s^{n-1}t: \cdots: st^{n-1}: t^n].$$

- **a)** Show that f defines an embedding of \mathbb{RP}^1 in \mathbb{RP}^n .
- b) Let $\mathcal{T}_n \to \mathbb{RP}^n$ be the tautological line bundle and $\mathbf{1}_n \to \mathbb{RP}^n$ the trivial line bundle over \mathbb{RP}^n . What is the relationship between $f^*(\mathcal{T}_n)$ and the bundles \mathcal{T}_1 and $\mathbf{1}_1$ over \mathbb{RP}^1 ?

Problem 4. Let (M, g) be an oriented Riemannian manifold and let Ω denote its volume element.

- a) Define the Laplace operator \triangle on smooth functions $f \in C^{\infty}(M, \mathbb{R})$ on M.
- **b)** If M is compact and $f, h : M \to \mathbb{R}$ are smooth functions then prove that

$$\int_{M} h\left(\bigtriangleup f\right) \Omega = -\int_{M} g(df, dh) \,\Omega$$

c) Show that if M is compact, every function with $\Delta f = 0$ is necessarily constant.

Problem 5. Let G be a compact Lie group and $\sigma: G \to G$ a Lie group homomorphism such that $\sigma \circ \sigma = id$.

- a) Prove that $H = \{g : \sigma(g) = g\}$ is a compact Lie subgroup of G.
- b) Show that G has a bi-invariant Riemannian metric relative to which σ is an isometry.

Problem 6. Consider the 1-forms in \mathbb{R}^4 :

$$\begin{split} \alpha &= (x_1^2 - x_2^2)\,dx_1 - 2x_1x_2\,dx_2 + dx_3\,; \quad \beta = 2x_1x_2\,dx_1 + (x_1^2 - x_2^2)\,dx_2 + dx_4 \\ \text{For each } p \in \mathbb{R}^4, \, \text{let} \end{split}$$

$$\Delta(p) := \{ v \in T_p(\mathbb{R}^4) : \alpha(p)(v) = \beta(p)(v) = 0 \}$$

- a) Show that Δ is a 2-dimensional involutive distribution in \mathbb{R}^4 .
- **b**) Given $p = (0, 0, a, b) \in \mathbb{R}^4$, construct a function $F: U \to \mathbb{R}^2$, where $U \subset \mathbb{R}^2$ is an open neighborhood of the origin, such that (a) F(0, 0) = (a, b)
 - (b) $\operatorname{Graph}(F) \subset \mathbb{R}^4$ is an integral submanifold of Δ .

Problem 7. We identify S^2 with the Riemann sphere $\mathbb{C} \cup \{\infty\}$ and define $F: S^2 \to S^2$ by $F(z) = z^3$ if $z \in \mathbb{C}$, and $F(\infty) = \infty$.

- **a)** Prove that F is a C^{∞} map.
- **b)** Show that for all $\omega \in \Lambda^2(S^2)$,

$$\int_{S^2} F^*(\omega) = 3 \int_{S^2} \omega$$